

"Success Stories of Mathematics in Real Life"

Prof.dr. Rob van der Mei

Centrum Wiskunde & Informatica (CWI) Vrije Universiteit Amsterdam (VU)

E-mail: mei@cwi.nl

Thanks to: Karen Aardal, Caroline Jagtenberg, Pieter van den Berg, Thije van Barneveld, Theresia van Essen, Martin van Buuren, Sandjai Bhulai, Coen Huibers, Lisette Sloof, Guido Legemaate, Rebekka Arntzen

Problem: Applied Mathematics too often Not Applied...

"practice"

SPTS Amsterdam

g Data' helpt politie

IEDERE ZONDAG SHOPPEN

mstlvn

Wiskunde redt levens

Success Stories of Mathematics in Real Life

Plan for today:

1. Examples of success stories

- Ambulance
- Firefighters
- Predictive policing
- Reducing waiting times in acute elderly care

2. Lessons learned and discussion

Short Resume

1991	M.Sc. in Mathematics and Econometrics
1995	Ph.D. in Queueing Theory
1996-2000	AT&T Bell Labs USA
2000-2002	KPN Research
2002-2004	TNO ICT
Since 2003	Full Professor in Applied Mathematics at VU A'dam
Since 2004	Centrum Wiskunde & Informatica

Over the years: shift from theory to application

Over the years:

100+ consultancy projects, 100+ R&D projects, 60+ Ph.D. students, 130+ M.Sc. students

Topics of interest: emergency logistics, healthcare logistics, RM & pricing, telecommunication networks, mobility, AI for suicide prevention, AI for cyber security and intelligence, defense

Data, Forecasting and Optimization

Statistics •

Ambulance Care in NL

A1-calls: Urgent and life threatening < 15 min

severe incident

<u>A2-calls</u>: Urgent but not life-threatening

broken leg

< 30 min

B-calls: Planned transport

• 'taxi' transport between hospital and care center or home

<u>Requirement</u>: 95% within response-time deadline

Ambulance Care in NL

Facts:

- 1 million calls per year, out of which 500,000 A1-calls
- 35,000 times (7%) the 15-minute target is not met
- Growing demand ('groeiende zorgvraag')

New and powerful concept:

Dynamic Ambulance Management: proactive planning

Ambulance Service Process

Mathematics in Action

CWI

FOVU

connexcion

G

rivm

Chess for Dummies

Chess for Professionals

Simple Model

- Region subdivided in N nodes (postal areas)
- Base locations
- Locations of hospitals
- <u>Next incident</u>: at node i with probability p_i
- Arrivals: Poisson
- All incidents of highest urgency
- Travel distance matrix R (fixed)

Simple Model

CWI

Relocation decision moments:

- <u>1</u>: when ambulance is dispatched to **newly** incoming incident
- **<u>2</u>**: when ambulance **becomes idle** \rightarrow **where to go?**

Single-Coverage Heuristic

Basic idea: minimize 'unpreparedness'

• System state:

for each ambu: (location/destination, phase)

• Unpreparedess:

Effectiveness of Relocations

late arrivals

Good news:

- 1. Only a few relocations really do matter
- 2. Doing 'at least something' already makes the difference ("80/20-rule")

Real-Time Decision Making

weather circumstances

mass events

IARIA Congress, Nice, July 24-28, 2022

real-time traffic information

Acceptance in Practice?

Acceptance of new concept only if

- 1. not too many relocations!
- 2. only at specific time epochs (e.g., departure from hospital)
- 3. performance is really better than 'static' solution

Proof of the Pudding...

Pilot with tool implementation

- 1. Our algorithms are well accepted and really used
- 2. More reliable / predictable performance
- 3. Strong reduction in late arrivals, while many more 112-calls!

Operational Setting

Computer zet ambulances slimmer in

Stokhos Emergency Mathematics

Voor het volledige artikel kunt u hier klikken.

What Made the Difference?

Computer zet ambulances slimmer in

Flevoland 2 juli 2017

Martin van Buuren

Lessons Learned

- 1. Not every researcher is a good entrepreneur!
- 2. Include software engineering expertise from the beginning
- 3. Presence of the research team during pilot phase crucial

Demand Changing over Time

CWI

Amsterdam in 1600

Amsterdam in 2020

Service region Amsterdam/Amstelland

Response time target: 5, 6, 8 or 10 minutes

Question: are base locations still properly located?

Mathematical Model

• <u>Repositioning</u> of base locations

Assumptions

- set of demand locations (DL's)
- multiple vehicle types k
- relative demand d_{i,k} for DL i for type-k vehicles
- distance matrix
- set of potential locations for base stations
- number of available vehicles per type
- professional or volunteer stations
- response time targets: 5, 6, 8, 10
- option to 'veto' relocation at specific stations

Optimization Model

Goal: Maximize expected coverage subject to constraints

Easy extension: inclusion volunteering stations

Optimization Results

coverage

4 modifications

	Dekking				
# wijzigingen	TS	RV	HV	WO	Totaal
0	87,68	98,23	96,84	88,64	90,83
1	89,99	98,23	96,84	88,64	92,29
2	91,76	99,64	$96,\!84$	88,64	93,74
3	93,20	99,64	97,27	89,78	94,76
4	94,38	99,64	96,84	90,68	95,53
Ongelimiteerd	98,62	99,86	98,10	93,37	98,53

Observation

% late arrivals can be reduced by > 50% by relocating only 4 stations!

Letter by Commander in Chief:

"The results convincingly show that—and how—significant improvements of our service quality can be realized by easily implementable re-allocation of our resources. While pro-actively re-allocating current base stations is costly and time-consuming, we recognize the benefits improved coverage provides. We have successfully integrated results from the model into our decision making process, and will continue to do so.

"Furthermore, we have identified another process which can greatly benefit from optimizations the model provides. When during a large scale incident multiple base stations are being called upon, we are now able to.re-allocate remaining resources (vehicles) to better positions to regain optimal overall coverage. Results from this project are to be implemented in the Spring of 2016."

\rightarrow next step: relocations during major incidents

Tool ("fireSCore")

. 1	1 >	n	121	10	rc
11	la	٢	laj	10	12

		0.11				
κ.	In	10	10	0	n	tc
,		IU	IU	C	H	D
		-	-	-		_

- ▶ Fire stations
- Fire truck status
- ▶ Fire truck location
- Response times (pumpers)
- ▶ Relocations
- ▼ Forecast

Forecast for wednesday September 25

Temperature: 17 °C

Wind: 5.8 m/s Gusts: 7.5 m/s

Precipitation: 65% Precipitation: 9 mm

Incident (storm) forecast for today: normal

Incident (storm) forecast for tomorrow: normal

Simulation	1
► Information	enbi
• Debug	

THEFT SUTTED A STATE STATE

CWI

Predictive Policing

- <u>Goal</u>: reduction of high-impact crimes
- Idea: Allocation of man-power at 'hot' places
- Cross-correlation with demo- and geographic factors
- 'Near-repeat' phenomenon

Waiting Lists Health Care

Challenges in Acute Elderly Care

DE UITDAGINGEN IN ACUTE OUDERENZORG IN DE KOMENDE 10 JAAR

Patient Journey

Patient journey through care supply system

CW1

surgery (after 14 days)

nursing home

1. High fractions of older people in need of institutional care that are currently on a waiting list

16% in the Netherlands30% in Slovakia47% in Lithuania

- 2. 16% of older adults in Spain die on the waiting list
- 3. Regional shortages: Copenhagen, waiting time > 3.5 years

Cause for long waiting times: preferences for nursing homes

Current Way of Working

Mmsterdam UMC

VI I 🌽

- Older adults typically apply for <u>one nursing home</u>
- They wait at home until a bed becomes available
 → probably placed in a <u>temporary</u> nursing home
- Hardly any coordination!
- Our approach: centralized approach using allocation model

(1) Preferences of patients

(2) Transitions between care centers

(2) Transitions between care centers

(3) Increase in urgency

Toy Example

(4) Transition to preferred nursing home

Allocation Model

- Patient preferences are defined as <u>utility functions</u>
- Allocation model maximizes the utility of all patients
- Simulation model to test quality of outcomes

Optimization model

$\max\sum_{p\in P}\sum_{n\in N}u_{pn}(l_p, w_p)x_{pn}$	
s.t. $\sum_{p \in P} x_{pn} \le c_n$	$\forall n \in N$
$\sum_{n \in N} x_{pn} = 1$	$\forall p \in P$
$x_{nn} \in \{0, 1\}$	$\forall p \in P, n \in N.$

maximize utility

Results for Amsterdam

- Current practice:
 - Waiting time till placement 211 days (232 till preferred)
- Assignment model with 1 preferred care center:
 - Waiting time till placement 51 days (177 till preferred)
- Assignment model with 2 preferred care centers:
 - Waiting time till placement 33 days (105 till preferred)

also psychiatry, youth care,... **Centralized approach:** Includes individual preferences Dramatic reduction in waiting time 2.

N

Success Stories of Mathematics in Real Life

