Digital Identity

Identity, Security, and Data Provenance

The rising STAR of Texas

IARIA Annual Congress 2022 Frontiers in Science, Technology, Services, and Applications Nice, France, July 22-28, 2022 (https://www.iaria.org/conferences2022/IARIACongress22.html)

Stan McClellan, PhD Texas State University, San Marcos TX, USA

Abstract

- Digital Identity is an abiding problem
- Data-Centric Protection:
 - Can augment conventional AAA
 - Can provide context-sensitive policy
 - Is compatible with Zero-Trust Architectures
 - Can provide Digital Identity

Stan McClellan

Professional Experience

- Co-Director, Connected Infrastructure Initiative (CIEDAR), Texas State University
- Professor, Ingram School of Engineering, Texas State University (2008 Present)
- Director, Ingram School of Engineering, Texas State University (2013 2018)
- CTO & co-Founder, Power Tagging Technologies (2008-2010)
- Chief Architect Systems & Solutions, ZNYX Networks (2006 2008)
- Technical Director & Distinguished Technologist, Hewlett Packard (2000 2006)

Publications & Activities

- Smart Cities in Application: Healthcare, Policy, and Innovation. Springer. 2019
- Smart Cities: Applications, Technologies, Standards and Driving Factors. Springer, 2017.
- The Smart Grid as an Application Development Platform. Artech House, 2017.
- "Smart City Applications," IEEE GreenTech 2018, Apr. 2018.
- "The Smart Grid as an Application Deployment Platform," IEEE GLOBECOM, 2014.
- "Cyber Security & Threat Management for the Smart Grid," IEEE ICC, June 2012.
- "Security & Network Management in the Smart Grid," 4th IEEE Computer & Communication Workshop (CCW), Oct. 2010.

stan.mcclellan@txstate.edu

Basic Agenda

- Background
 - Classical AAA
 - Contemporary Approaches
- Problems
 - High Profile
 - Constant Failure

- (re)Definition
 - Phases & Principles
 - Use Cases & Comparison
- Possible Outcome
 - Protected Data
 - Zero-Trust Architecture

Classical Authentication

- What I <u>know</u>
 - Password, Challenge/Response, etc.
- What I have
 - Access Card, USB Dongle, etc.
- What I <u>am</u>
 - Fingerprint, Retina Scan, etc.

Classical AAA

- Authentication
 - Are you who you say you are?
 - Exercises "Know / Have / Am" of classical authentication
- Authorization
 - Should you have access to this data?
 - Typically via access control lists (ACL) and user databases
- Accounting
 - Access for how long, and in what fashion?
 - Most often used for billing purposes and audit trails

Approaches: Technologies

- Network-based
 - TACACS/+
 - RADIUS (RFC-2865 et.al.)
 - DIAMETER (RFC-6733, et.al.),
- Person-based
 - Self-Sovereign Identity (SSI)
 - Decentralized Identifiers (DID)
 - e.g. EU "ESSIF" per eIDAS

- Application-based
 - SSL/TLS (RFC-8446): encryption
 - OAuth2: constrained delegation of access to applications
 - UMA: user-managed access, extensions of OAuth
 - FIDO2 (WebAuthn, CTAP2.x): client-to-authenticator protocol
 - OpenID/FAPI: decentralized attestation

Approaches: Companies

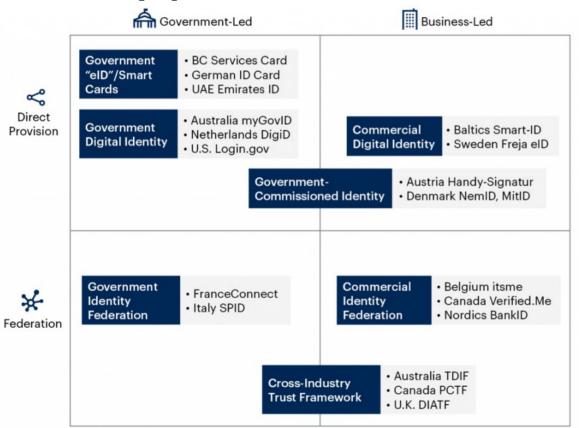
Large Companies

- Okta (https://www.okta.com)
- IBM

(https://www.ibm.com/in-en/blockchain/identity)

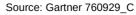
- Thales Group (https://www.thalesgroup.com/en/markets/digitalidentity-and-security)
- Docusign (https://www.docusign.com/products/identify)
- Teradata

(https://www.teradata.com/Solutions/Digital-Identity-Management)


Small Companies

- ImageWare (https://imageware.io)
- Mitek (https://www.miteksystems.com)
- Vouched (https://www.vouched.id)
- Trulioo (https://www.trulioo.com)
- iComply (https://icomplyis.com)
- InCode (https://info.incode.com)
- TeleSign (https://www.telesign.com)

There are a bunch of them ... The market is crowded and growing



Approaches: Governments

- By 2023, at least 80% of government services that require citizen authentication will support access through multiple digital identity providers.
- By 2024, at least a third of national governments and half of U.S. states will offer citizens mobile-based identity wallets.
- Only a minority will be interoperable across sectors and jurisdictions.

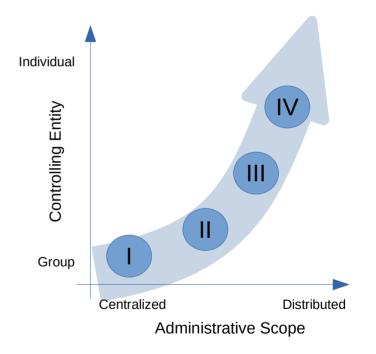
This is a problem

Defining a "Digital Identity"

- Bundle of identifying attributes and data
 - Discrete, secure, self-contained, extensible ("atomic")
- Authentication + Authorization
 - Uniquely identifies the entity to which it belongs
- Portable
 - Can be sent to insecure location via insecure network

Not Digital Identity

- National/Civil Identity
 - Passport, Driver License, Social Security, etc.
- Online Identity
 - Breadcrumbs, purchase history, public information, etc.
- Computer Identity
 - Usernames, passwords, encryption keys, etc.
- Encryption (!)


Digital ID vs. Encryption

	Function	Encryption	Digital ID
General	Support multiple algorithms (e.g. AES-128)	Y	Y
	Support multiple keys per user or instance	Y	Y
	Partial decryption / partial disclosure	N	Y
Detection	Interval (dates, times)	N	Y
	Locations (geo, network, system)	N	Y
	Attempt tracking (number, lockout)	Y	Y
Countermeasure	Notification (of owner – email, text, etc.)	N	Y
	Escalate (new & stricter challenges, etc.)	N	Y
	Self-Destruct	N	Y

Phases of Identity (C.Allen)

- Centralized (unitary)
 - Single administrative authority
- Federated (multi-central / oligarchy)
 - Multiple administrative authorities, federated
- User-Centric (multi-central / individual)
 - Multiple administrative authorities, federated
- Self-Sovereign (non-central)
 - Individual control regardless of authorities

Ten Principles of Identity (C.Allen)

- 1. Exist Independently
- 2. User Control
- 3. Self-Owned Data
- 4. System Transparency
- 5. Persistence

July 2022

- 6. Transportable
- 7. Widely Used
- 8. User Consent
- 9. Minimal Disclosure
- 10. Protection of Rights

EcoSystem is Mandatory

Creation

- Created and owned by the entity identified
- More than one ID per entity (many to one)
- Identifying data provided at creation (schema)
- Requires secure, validated "writer" to ingest data, create bundle
- Usage
 - Network needed to share and for some countermeasures
 - May require centralized management (ala PKI?)
 - Requires secure, validated "reader" to ingest bundle, validate access
 Must be cross-sector and cross-jurisdiction, and linked to valuable use-cases

Blockchain is not Identity

- Myths
 - Use Blockchain as a database to store personally identifying information (PII)
 - Use Blockchain as a distributed hash table (DHT) for PII data that is stored offchain
- Reality
 - Blockchain is transparent, immutable, reliable and auditable
 - It can be used in the secure exchange of cryptographic keys ... e.g. <u>PKI</u> not <u>PII</u>
 - This may be a step toward decentralized public key infrastructure (PKI) which can lead to management of PII

High Profile, High Cost

- April 2021
 - UN Data Breach
 - · Fraudulent credentials allow access to sensitive data
 - https://solutionsreview.com/identity-management/un-data-breach-expert-commentary-on-a-high-profile-attack/
- January 2022
 - Okta Identity Management compromised by Lapsus\$
 - 2.5% of customers data "may have been viewed or acted upon"
 - https://www.wired.com/story/okta-hack-customers-lapsus-breach/
 - Tesla cars compromised by German researcher
 - Bug in open source logging tool exposed cars directly to the internet
 - https://techcrunch.com/2022/01/24/teslamate-bug-teslas-exposed-remote/
- July 2022
 - MICODUS GPS Tracker compromised by Bitsight
 - Exploit tracks and remotely manipulates "at least a million vehicles"
 - https://techcrunch.com/2022/07/19/micodus-gps-tracker-exposing-vehicle-locations

- [T]raditional protections just aren't working ...
- [T]he solution is actually quite simple: Protect the data itself

Key: Zero Trust Architecture

- Everything is a resource. All resources can present a threat.
- All communication is secured, regardless of location.
- Access to a resource is on a perperson basis, with minimal privilege granted.
- Access policies are dynamic, and based on telemetry.

- All assets are monitored. No asset is inherently trusted.
- Authentication and authorization are enforced per-resource, requiring identity, credential, access, and asset management.
- Telemetry of access requests and asset state is used for continual improvement

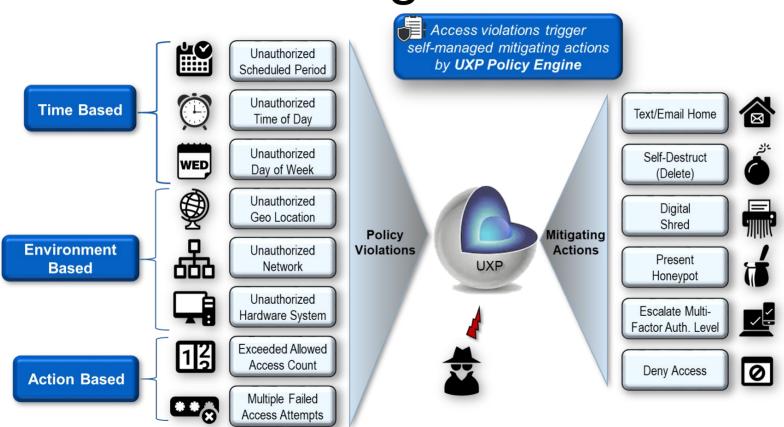
(per NIST SP 800-207)

Use Case: Supply Chain

- Problem
 - Layered security model doesn't work
 - Boundary, Network, System, File ... easily exploited
- Approach
 - Data-Centric Protection
 - Augments the layered enterprise security model
 - Built-in policy-based tracking and protection

- Results
 - Intelligent data selfenforces protection policies
 - Self-destruct, invoke different access procedures, call-home, honeypot, etc.

Use-Case: IT/OT Convergence


Problem

- Endpoints are small, remote, with limited CPU and memory
- Battery-powered devices conserve energy by "sleeping"
- Data may transit unknown networks from insecure locations
- Approach
 - Secure the data at the source before transmission
 - Track the data when it is received and utilized via enclosed policies

Result

- Independence from incompetent device manufacturers
- Independence from insecure intervening networks and paths
- Policy-driven visibility for all activities, states, and locations of the data itself

Intelligent Data

Data-Centric Protection

- Adheres to:
 - Principles of Zero-Trust Architecture
 - Conventional AAA principles
- Is not:
 - BlockChain, but can be coimplemented
 - Encryption, but depends on it

- Provides:
 - Use-Case-Aware security
 - Context-sensitive policy
- Implements:
 - Digital Identity

Thank You!

- Useful References
 - B. Nadji. Digital ID Ecosystems. v1.0. June 2022.
 - C. Allen. The Path to Self-Sovereign Identity. April 2016. https://www.lifewithalacrity.com/2016/04/the-path-to-self-soverereign-identity.html
 - R. Larue-Langlois. The State of Digital ID in Canada. May 2022. https://www.itworldcanada.com/article/the-state-of-digitalid-in-canada
 - A. Mickoleit, M. Brown. Top Trends in Government for 2022: Digital Identity Ecosystems. Jan 2022. https://na.idemia.com/2022/03/09/gartner-reprint-top-trends-in-government-for-2022-digital-identity-ecosystems/
 - Decentralized Identifiers (DIDs) v1.0. W3C Recommendation. July 2022. https://www.w3.org/TR/did-core/
 - A. Preukschat. Understanding the European Self-Sovereign Identity Framework (ESSIF). July 2019.https://ssimeetup.org/understanding-european-self-sovereign-identity-framework-essif-daniel-du-seuil-carlos-pastorwebinar-32/
 - D. Gisolfi. Self-sovereign identity: Why blockchain? June 2018. https://www.ibm.com/blogs/blockchain/2018/06/self-sovereign-identity-why-blockchain/
 - S. Rose et.al. Zero Trust Architecture. NIST SP 800-207. Aug. 2020. https://doi.org/10.6028/NIST.SP.800-207