

Distinct Characteristics between "Anshin" and Feeling of Safety Evaluations

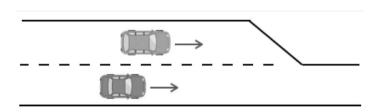
Shota Matsubayashi¹, Kazuhisa Miwa¹, Hitoshi Terai², & Yuki Ninomiya¹

¹Nagoya University, Japan, ²Kindai University, Japan

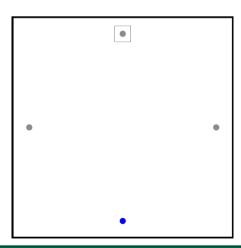
matsubayashi.shota.v0@f.mail.nagoya-u.ac.jp

Today's Presenter

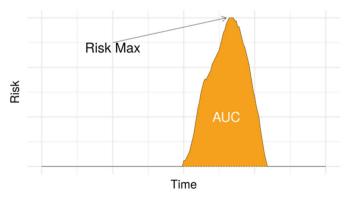
Shota Matsubayashi


- Ph.D. in Information and Science
- Affiliation
 - Global Research Institute for Mobility in Society (GREMO), Institutes of Innovation for Future Society (InFuS), Nagoya University, Japan
- Recent Work
 - Self-Benefit and Others' Benefit in Cooperative Behavior in Shared Space (in press), Human Factors: The Journal of the Human Factors and Ergonomics Society.
 - Development of a Driving Model That Understands Other Drivers' Characteristics (2020). *HCII 2020, 2(1918)*, 29–39.
 - Model-based Approach with ACT-R about Benefits of Memory-based Strategy on Anomalous Behaviors (2019), Proceedings of the 41th Annual Meeting of the Cognitive Science Society, 776–781.

Introduction: Subjective evaluation

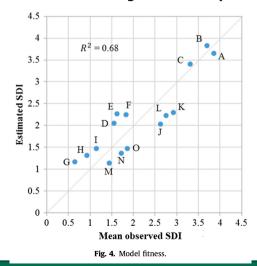

- In traffic studies, subjective evaluations have become important
 - Useful for developing cooperative autonomous vehicles [Hase]
 - in merging

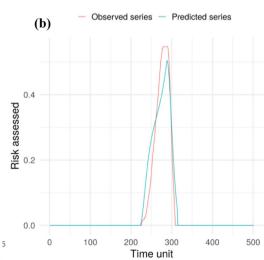
in shared space


Introduction: Subjective evaluation

- In traffic studies, subjective evaluations have become important
 - Examples:
 - Risk perception
 "How much risk do you perceive in this situation?"
 - Comfort/discomfort
 "How comfortable/discomfortable is this vehicle?"
 - Fear

"How much fear do you experience about the vehicle as a pedestrian?"





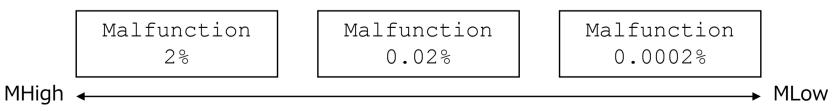
Introduction: Subjective evaluation

- Subjective evaluation does not always match objective safety
 - Model fitting is not high enough to predict perceived risk precisely [Hasegawa]
 - Perceived risk exhibits a large variation among participants
 - Predicting perceived risk requires considering more complex independent variables [Petit]
 - Passengers perceive risk even when the vehicle maintains an objectively safe speed and gap

Introduction: Concept of "Anshin"

- In Japanese, "安心 (anshin)" is a well-known concept to express a subjective feeling
 - Dictionary definition:
 - peace of mind
 - freedom from care/fear
 - Usage Example:
 - 安心な社会 (peaceful society)
 - 安心な暮らし (comfortable living)
 - Nature:
 - Difficult to be translated into English precisely [Mukaidono]
 - Used differently from "安全 (safety)" or "安全感 (feeling of safety)" [Kikkawa]
 - "Anshin" is totally based on psychological factors
 - Safety can be ensured with technology

Goal



What is the difference between "Anshin" and feeling of safety evaluations?

- As for the criticality of feature,
 - Feeling of safety evaluation will be lower than "anshin" evaluation for a high-criticality feature

- As for the information about malfunction,
 - "Anshin" evaluations will change significantly after the information about the unstable performance

Method: Experimental Design

- 4-factor design
 - 1. Evaluation ("Anshin"/Feeling of safety; between factor)
 - 2. Malfunction (MHigh/MMid/Mlow; between factor)

Malfunction 2%

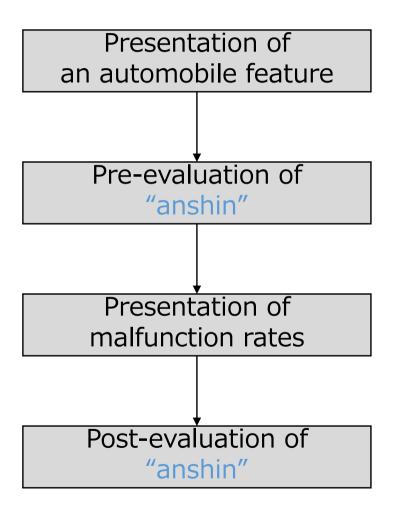
Malfunction 0.02%

Malfunction 0.0002%

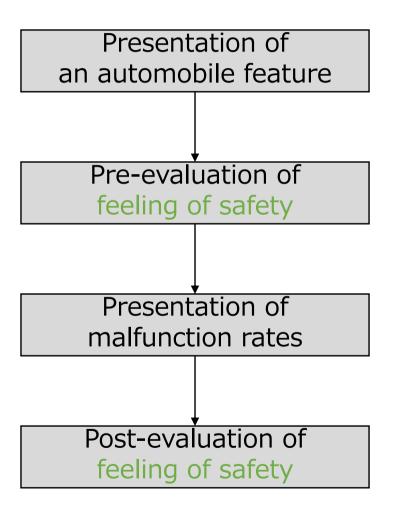
3. Criticality (CHigh/CMid/CLow; within factor)

Automatic driving

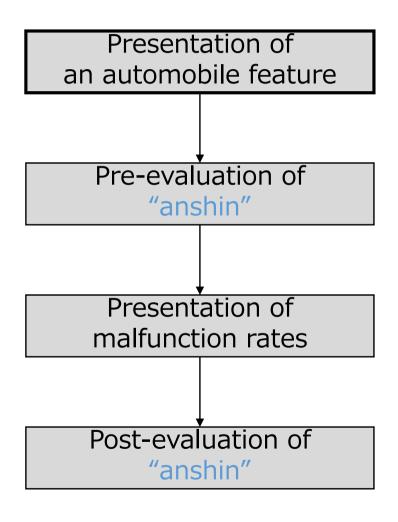
Automatic parking


Automatic wipers

- 4. Phase (Pre-evaluation/Post-evaluation; within factor)
 - Evaluation before/after the malfunction information is provided



"Anshin" condition


Feeling of safety condition

"Anshin" condition

CHigh condition

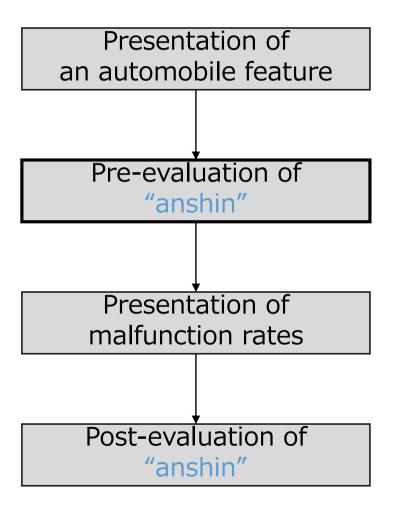
In recent years, the automatic driving feature has become popular.

This feature allows a vehicle to sense its surroundings and automatically drive to the destination.

Although this feature is effective in reducing drivers' efforts, malfunctions can still occur.

CMid condition

 \sim , the automatic parking \sim


CLow condition

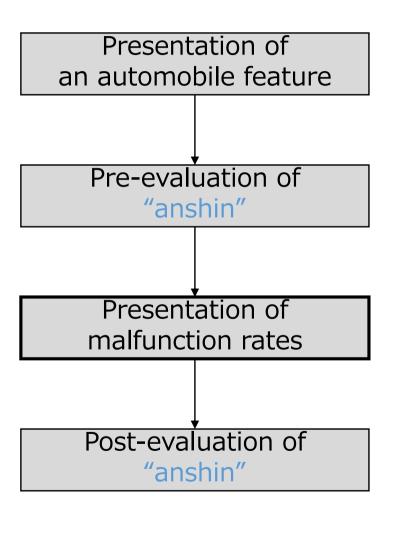
 $^{\sim}$, the automatic wiper $^{\sim}$

"Anshin" condition

"Anshin" condition

```
How do you feel about its "anshin"?

1: Does not feel "anshin" at all
4: Neither
7: Highly feel "anshin"
```


Feeling of safety condition

How do you feel about its safety?

"Anshin" condition

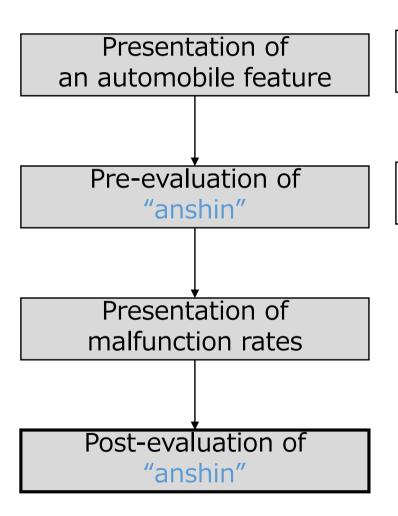
MHigh condition

Report of large investigation shows the following malfunction rates of this feature.

	Region X	Region Y	Region Z
Company A	1.4%	1.7%	1.9%
Company B	2.1%	2.3%	2.5%

MMid condition

	Region X	Region Y	Region Z
Company A	0.014%	0.017%	0.019%
Company B	0.021%	0.023%	0.025%


MLow condition

	Region X	Region Y	Region Z
Company A	0.00014%	0.00017%	0.00019%
Company B	0.00021%	0.00023%	0.00025%

"Anshin" condition

"Anshin" condition

Consider the malfunction rates.

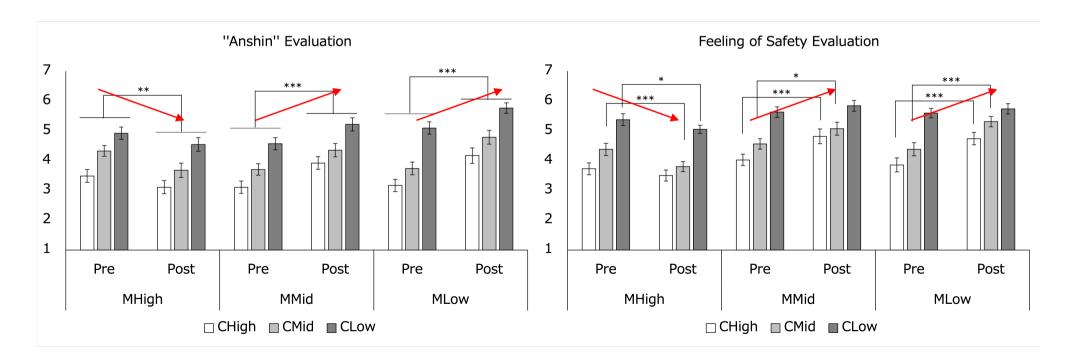
How do you feel about its "anshin"?

Feeling of safety condition

Consider the malfunction rates.
How do you feel about its **safety**?

Results: Pre-evaluation

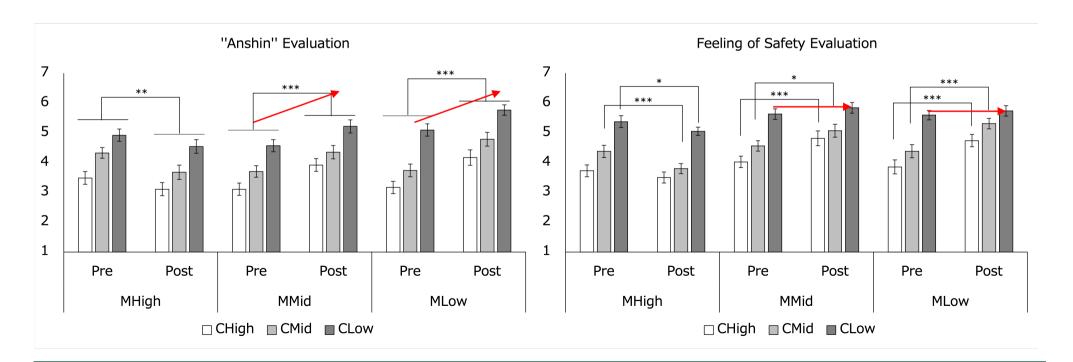
- ANOVA results show that:
 - "Anshin" < Feeling of safety
 - There was no difference with respect to the criticality



Results: Changes due to information

Common Characteristics

- Both evaluations decreased with high malfunction rates
- Both evaluations increased with moderate or low malfunction rates



Results: Changes due to information

Dinstinct Characteristics

- With moderate or low malfunction rates,
 - the "anshin" evaluations increased uniformly
 - the feeling of safety evaluations did not increase for the low criticality features (i.e., automatic wipers)

Discussion

- The difference between "Anshin" and feeling of safety evaluations
 - Overall characteristics
 - Feeling of safety evaluations was higher than the "anshin" evaluations
 - "Anshin" may have more stringent criteria than feeling of safety
 - As for the criticality of feature and the information about malfunction,
 - Feeling of safety evaluations did not improve when noncritical features were described as stable
 - Stable performance of low-critical features can be objectively interpreted as non-relevant to safety

Conclusion

- Feeling of safety is sensitive to feature criticality and unstable performance
 - Because feeling of safety is based on objective physical measurements
- Conversely, "anshin" may be relatively insensitive and more subjective
 - Because "anshin" includes complex processes of prediction and trust [Mukaidono2009]

 Further verification is needed to clarify the differences between "anshin" and feeling of safety