

#### Deep Learning For Condition Detection In Chest Radiographs: A Performance Comparison Of Different Radiograph Views And Handling Of Uncertain Labels

Mubashir Ahmad<sup>1</sup>, Kheng Lee Koay<sup>1</sup>, Yi Sun<sup>1</sup>, Farshid Amirabdollahian<sup>1</sup>, Vijay Jayaram<sup>2</sup> and Ganesh Arunachalam<sup>2</sup> <sup>1</sup>Department of Computer Science, University of Hertfordshire, Hatfield, UK <sup>2</sup>The Princess Alexandra Hospital, Harlow, UK

#### **MUBASHIR AHMAD**

mubashir.ahmad21@herts.ac.uk



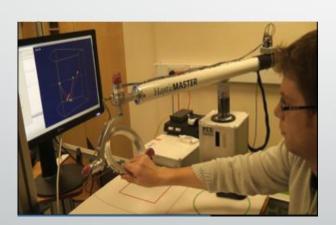


## Mubashir Ahmad

- MSc in Artificial Intelligence with Robotics (2017-2019)
- 3<sup>rd</sup> year PhD researcher in department of computer science, University of Hertfordshire
- Data Scientist at Big Data Technologies Innovation Lab

#### Interests

Artificial Intelligence, Deep learning, Medical Imaging








### Robots in UH Robot House and Robotics Research Group










#### Introduction

- Chest Radiograph Interpretation
- Chexpert Dataset
- AP, PA and Lateral Projections
- Multilabel Classification
- Deep Learning for Image Classification
- Five Clinically Significant Conditions
  - Cardiomegaly
  - Consolidation
  - Atelectasis
  - Pleural Effusion
  - Oedema

#### (a) Supporting Devices



#### (b) Cardiomegaly

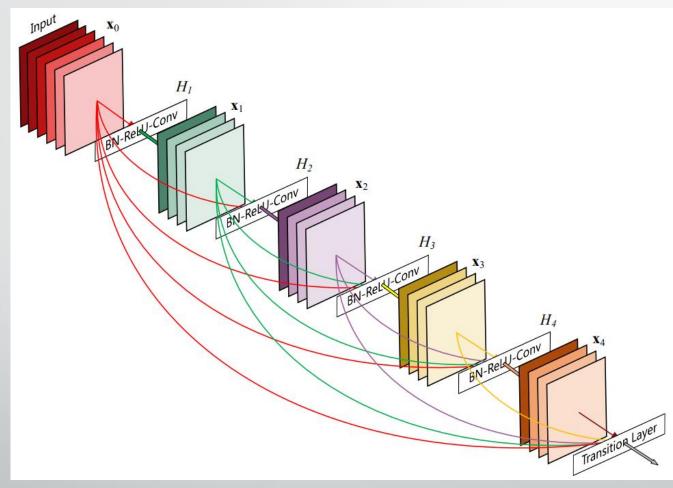


#### (c) Edema



#### (d) Multiple




#### Images from CheXpert Dataset [1]

# Methodology

- DenseNet121
- Each Projection Separately Considered
- Transfer Learning
- Multiscale Template Matching
- Data Augmentation
- Labelling Uncertain Samples



## Methodology – DenseNet121



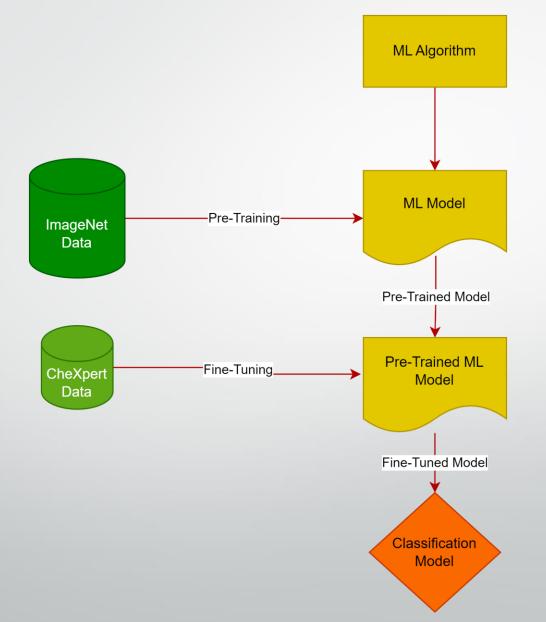

Five Layer Dense Block From DenseNet121 [2]

### Methodology – ALL Views

AP

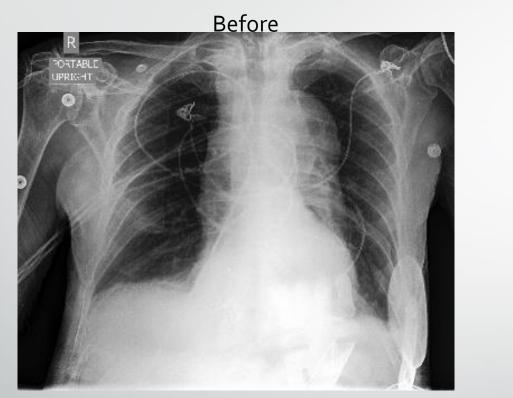







Different projections of radiographs of same patient from CheXpert data Set [1]

- Different orientation of Discriminative Features
- Heart size in AP and PA

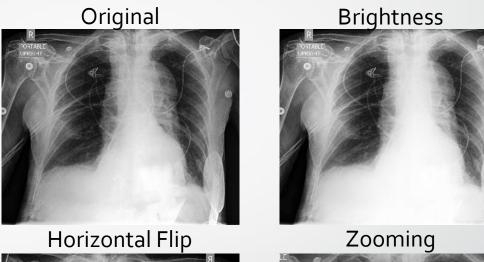



# Methodology – Transfer Learning





# Methodology – Template Matching






Same radiograph before and after applying template Matching [1]

# Methodology – Augmentation

- Enhance data
- Increase data diversity
- Multiple Techniques (Zooming, Brightness, Flipping, etc.)





## Methodology – Label Uncertain with GMM

- Trained GMM for each condition and view separately
- Classify uncertain samples
- Included them in the training set



## Results – Best Model

| Anteroposterior |       |          |          |           |                 |  |
|-----------------|-------|----------|----------|-----------|-----------------|--|
| Ехр             | DN121 | DN121_TM | DN121_TL | DN121_AUG | DN121_TM_TL_AUG |  |
| 1               | 0.85  | 0.79     | 0.76     | 0.87      | 0.84            |  |
| 2               | 0.79  | 0.74     | 0.81     | 0.76      | 0.85            |  |
| 3               | 0.76  | 0.75     | 0.86     | 0.79      | 0.82            |  |
| 4               | 0.78  | 0.81     | 0.8      | 0.8       | 0.83            |  |
| 5               | 0.76  | 0.81     | 0.84     | 0.84      | 0.83            |  |
| 6               | 0.76  | 0.72     | 0.9      | 0.86      | 0.83            |  |
| 7               | 0.8   | 0.79     | 0.67     | 0.8       | 0.88            |  |
| 8               | 0.82  | 0.63     | 0.8      | 0.84      | 0.85            |  |
| 9               | 0.81  | 0.79     | 0.82     | 0.82      | 0.86            |  |
| 10              | 0.74  | 0.78     | 0.81     | 0.8       | 0.88            |  |
| Avg             | 0.79  | 0.76     | 0.81     | 0.82      | 0.85            |  |
| Std             | 0.03  | 0.05     | 0.06     | 0.03      | 0.02            |  |
| L               |       |          |          |           |                 |  |

• Analysis of Variance (ANOVA)

[F(4, 45) = 5.504, p = 0.001]



### Results – Comparison Between Views


| _   |                     |                     |         |  |  |  |
|-----|---------------------|---------------------|---------|--|--|--|
| Ехр | Anteroposterior(AP) | Posteroanterior(PA) | Lateral |  |  |  |
| 1   | 0.84                | 0.69                | 0.79    |  |  |  |
| 2   | 0.85                | 0.73                | 0.9     |  |  |  |
| 3   | 0.82                | 0.74                | 0.84    |  |  |  |
| 4   | 0.83                | 0.74                | 0.78    |  |  |  |
| 5   | 0.83                | 0.74                | 0.87    |  |  |  |
| 6   | 0.83                | 0.73                | 0.82    |  |  |  |
| 7   | 0.88                | 0.73                | 0.84    |  |  |  |
| 8   | 0.85                | 0.69                | 0.86    |  |  |  |
| 9   | 0.86                | 0.7                 | 0.82    |  |  |  |
| 10  | 0.88                | 0.72                | 0.81    |  |  |  |
| Avg | 0.85                | 0.72                | 0.83    |  |  |  |
| Std | 0.02                | 0.02                | 0.04    |  |  |  |
|     |                     |                     |         |  |  |  |

Analysis of Variance (ANOVA)

[F(2, 27) = 64.677, p < 0.001]



### Results – After Removing Uncertainty



 $\langle 000\rangle$ 

## Limitations and Future Work

Limitations:

- Insufficient data for each projection
- Same hospital data

Future Work:

- Other deep learning techniques such as transformers
- Co-design studies with radiologists
- Integrate in clinical work flow

### Conclusion

- AP out performs PA and Lateral views
- Added techniques improve the model performance
- Relabelling the uncertain with GMM works
- These models can assist radiologist

### References

- 1) Irvin, J., Rajpurkar, P., Ko, M., Yu, Y., Ciurea-Ilcus, S., Chute, C., ... & Ng, A.Y. (2019, July). Chexpert: A large chest radiograph dataset with uncertainty labels and expert comparison. In *Proceedings of the AAAI conference on artificial intelligence* (Vol. 33, No. 01, pp. 590-597).
- 2) Huang, G., Liu, Z., Van Der Maaten, L., & Weinberger, K. Q. (2017). Densely connected convolutional networks. In *Proceedings* of the IEEE conference on computer vision and pattern recognition (pp. 4700-4708)

# THANKYOU