
Autonomous Drone Landing in 3D
Urban Environment

Using Real-Time Visibility Analysis

Oren Gal, Yerach Doytsher, Judah (Udi) Shriki

,

Presentaion contents

● Intorduction - Goal of Research, Scope of Work and Brief overview.
● Related Work - Focus and Novelty of this work.
● Algorithms in depth – Return Home, Navigation.
● Drone Programming:

● Drone Selection – Phase I working with A.R. Drone by default
● Programming A.R. Drone – Problems, Solutions
● Drone Selection – Phase II Model Comparison
● Bebop2 Model Specifications.
● Programming with AR.SDK 3 and Python wrappers.
● Simulations with Gazebo based Sphinx simulator.

● Machine Learning Process:
● Manual Data Collection
● Creating an OpenGL based Automation.
● Fitting Large Dataset into SVM
● Comparing Classifiers and Improving Accuracy

● A Final Attempt to Improve Mechanism Design
● Experiments And Result
● Future Work

Introduction - challenges

Machine Learning
Techniques

03

Landing Safely is a
challenge for even
trained pilots

02

Landing autonomously:
a challenge on focus of
researchers

01

Both on manned and
remotely controlled
aircrafts

Supervised vs.
Unsupervised
Creating Data
Comparing Classifiers

Quadcopters and other
types of UAV.
Using Sensors, Shapes
or Color, LEDs etc.

Introduction – GOALS

AR Tags Identification
and Analysis
Create Large Data

Mechanism for
Visual Processing

04

SVM Training

05

Fitting Large Data Into
SVM Models and
Comparing Classifiers for
Accuracy

POC Simulation

06

POC Project –
Flight Simulation
of a Mission

Scope of Work
• Introduce a Mechanism for

Autonomous Landing using Vision
• Compare ML Vs. Calculations
• Simulation Flight POC

Scope of Work

Known Target Position
Limited Search Area

Target Position

Path to Target is Clear
No Obstacles

Obstacle Avoidens

Clear Visibility
Not Obscured

Visibility

Continuus Comm.
Ground Station Control

Communication

• “Return Home” to navigate close to target
• Then look around until target identified
• Set Course and fly until hovering above target
• Descending and keeping target below
• Final stage – Decision based on Visual Data

Proposed Mechanism
Search

Platform
Fly To Target

Identify
Landing Area

Descend
Close To
Target

Analyze Plane
Angular
Position

Decide:

If Safe - Land

Algorithms
Return Home, Search, Navigation

Return Home procedure

Automatically starts when
signal is lost.

Home set to take-off position

Lost signal
Remote Control Button
Operator Call/Cancel

Operator request
Programatically

Can also change Home

API command

Return Home procedure

1. If (height < 20m) then go up to 20m
2. Go in a straight line directly to target.
3. On target position, lower height to 2m.

Algorithm

RTH path

Fly Path

20m

RTH path

Fly Path

20m

Search State
RTH will bring Drone up to a few meters off target.

We assume 1-10m radius of error by GPS accuracy

Goal: find target location visually and set course

Search State - Algorithm
Search Algorithm:
1. height = 4m
2. While (height < max_height):
3. For (tilt = -20 to -90 step 35):
4. For (pan = 0 to 360, step 45):
5. markers = find_markers(image)
6. If (markers is not None) then: State.next
7. height.add(1m)
8. State.set(FAIL)

Navigation

Mean Values of X,Y
Minimum 1 Marker

Multiple markers

Keep X close to Zero
Histheresis

Navigate

Multi resolution
Markers ID series
Distance to speed

Markers sizes

Projective View
Forward / Tilt Down

fly Forward

Drone Selection
Model Comparison

Issues in Consideration

Drone Selection – Phase I

Can look Downward
Programable + SDK
Only one I had - default

Pros

Old (2012)
Weak Batteries
Low Resolution

CONS

A.R. Drone – Starting point

Using libardrone with OpenCV
Switching camera not implemented [fixed]
Require working with obsolete python 2.7
Worked ok with small load (mission control)
Not responsive when mission control became complex

Replaced with pyardrone
Python 3 compatible
Also Did not implement switching camera [fixed]
Worked OK.

Libardrone

Pyardrone

A.R. Drone – Starting point

Testing Mission Controls:
State Machine
Control Drone Flight
Getting Image Frames

Testing Image Processing:
Identify Markers
Trigger Operations

Testing ML:
Create Initial Dataset
Test Classifier

Goals Reached

● Fish-eye Lens Camera

● Digital 3-axis stabilization

● Digital pan/tilt 180°

● Strong 6” propellers

● 2km Range (using Skycontroller)

● Up to 30 min. flight time

● Supported in Sphinx simulator

● No more hardware debugging!

Bebop 2

Programing bebop2

Next Generation SDK
for Parrot Drones

Ar.SDK 3
A Parrot Python Package

Part of Ground SDK
Closed Virtual Environmet

Cannot Be Adapted or Changed

Olympe

Third Party Python Package
Encapsulate AR.SDK3
Edit and Add Features

Run/Debug from any Python IDE
Integrates with other packages

Supported Threading Video

PyParrot

PyParrot Adaptation

Out of the box

Drone Controller [OK]

Video Handlers

FFMPEG
Non-Threaded
Smears video

Lost Detections

VLC
Threaded version

Require VLC module
OpenCV incompatible

My Code

Automation
Mission Control
State Machine

Video Handler

VideoCaptureThread
Threaded Design

OpenCV VideoCapture
Reduce Load (Automation)

Sphinx Simulator

Based on Gazebo
framework

Gazebo

Operable with
Controllers, Application

Controls

Simulates graphics
and physics

Physics

No more Hardware
Debugging

code

Official Parrot Firmware

Firmware

Official Parrot Drones
Graphics Models
Physics Models

models

Machine training
Creating Data

Fitting Large Data-set
Comparing Classifiers

Improving Accuracy

Data Creation

OpenGL Simulation output used as camera input to existing code
Controllable and precise to accurately label data vectors
Could run on separate threads and even different machines (parallel)

Automation with OpenGL

Results

A few days to create (automatic)
Dataset of 15M vectors

accurate labeling (?)

Fitting and Comparing Classifiers
● Dataset of 15M vectors for training

● Fitting all-at-once could not be performed
Solution: Partial fitting (details)

● Testing against different classifiers, parameters

● Improving bad results:
■ Classifier of Classifiers results (Smart Voting) – no Improvement
■ Rectify errors of visual detections – Imroved☺

Best Results – SGD Classifier with loss=‘log’

● First results [FAIL]

● Classifier of Classifiers [FAIL]

● 10 best classifiers

● Vector of results

● Voting (not fair)

● Best result 76.8%

● Errors in Detections?

The Open University of Israel

Department of Mathematics

and Computer Science

Classifier Type Accuracy

SGD, epsilon insensitive 57.341%

SGD, hinge 75.716%

SGD, huber 59.841%

SGD, log 73.658%

SGD, modified huber 73.362%

SGD, squared eps. insensitive 59.6%

SGD, squared hinge 73.857%

SGD, squared loss 57.171%

Perceptron 74.579%

Bernoulli NB 62.317%

Passive Aggressive Classifier 74.455%

Comparing Classifiers

● Used Calculations over data to

rectify extreme errors

Drastic Improvement in accuracy!

Comparing Classifiers
The Open University of Israel

Department of Mathematics

and Computer Science

Classifier Type Best Original diff

SGD, epsilon insensitive 83.450% 57.341% 26.11%

SGD, hinge 85.062% 75.716% 9.35%

SGD, huber 81.876% 59.841% 22.04%

SGD, log 86.175% 73.658% 12.52%

SGD, modified huber 86.131% 73.362% 12.77%

SGD, sqr-eps. insensitive 82.019% 59.6% 22.42%

SGD, squared hinge 85.891% 73.857% 12.03%

SGD, squared loss 82.942% 57.171% 25.77%

Perceptron 85.470% 74.579% 10.89%

Bernoulli NB 81.664% 62.317% 19.35%

PassiveAggressive Classifier 84.041% 74.455% 9.59%

Summary
First Review Amendments

Experiments
Future Work

Experiments and results
Unit TEsts
● Search – find visual marker [OK]

● Found – set course [OK]

● Fly – move and keep course [OK]

● Descend – lower height while keep target below [OK]

● Decide – use visual data to decide when it is safe to land:

Experiments
● Fully tested only with manually rotating landing pad in simulation

● Improved landing pad detection from afar using multiple marker sizes

1. Classifier tested separately [OK]
2. Some problems during simulation – could be solved. (sizes/ distortions?)

Future Work

Experiments with full

simulation of waves

Waves

Integrate with flight
computer for full
autonomous UAV

Firmware

Experiment with real
live drone flight

Drone

Fix classifier integration
into the mechanism

Classifier

Add Path planing and
obstacle avoidence

Path

CREDITS: This presentation template was created by
Slidesgo, including icons by Flaticon, and infographics &

images by Freepik

THANKS!

http://bit.ly/2Tynxth
http://bit.ly/2TyoMsr
http://bit.ly/2TtBDfr

