

#### Movie Reviews Sentiment Analysis Using BERT Gibson Nkhata, Usman Anjum, Justin Zhan





#### The Fifteenth International Conference on Information, Process, and Knowledge Management eKNOW 2023

Presenter: Gibson Nkhata University of Arkansas, USA gnkhata@uark.edu



# Presenter Biography

- **Gibson Nkhata** received a Master's degree in Computer Science from the University of Arkansas, USA, in 2022. He is currently a doctoral student in Computer Science at the same university. He is also working as a Graduate Research Assistant in the Computer Science and Computer Engineering (CSCE) department under the DART project.
- His research interest lies in application of Deep Learning techniques in Natural Language Processing (NLP) tasks like Sentiment Analysis, Stance Detection and Polarization Quantification on social media.



## Outline

- Motivation and objectives
- Related work
- Our approach
- Experiments and Results
- Conclusion and contributions
- Future Work



### Motivation

- Sentiment Analysis
- Sentiment Analysis (SA) aims to determine the polarity of:
  - emotions like happiness, sorrow, grief, hatred, anger, and affection
  - opinions from text, reviews, and posts, which are available in many media platform
- Sentiment analysis helps in tracking people's viewpoints
- It is an important factor when it comes to social media monitoring, product and brand recognition, customer satisfaction, customer loyalty, advertising and promotion's success, and product acceptance, etc.



### Motivation

- > Movie Reviews:
- Movie reviews is an important approach to assess the performance of a particular movie.
- A collection of movie reviews gives a deeper qualitative insight on different aspects of the movie compared with stars or numerical rating.
- A huge number of movie reviews can be crawled from social media platforms and deep learning techniques can be applied to NLP tasks to mine knowledge from the reviews.
- Movie reviews have standard sentiment analysis benchmark datasets, e.g., IMDb dataset, where salient and qualitative works have been published on.



### Motivation

#### > BERT

- BERT is a popular pre-trained language representation model and has proven to perform well on many NLP tasks like Named Entity Recognition, Question Answering and Text Classification.
- Therefore, BERT can just be finetuned with an additional component on any downstream task.
  - This speeds up training
- Results of sentiment classification can be applied in computation of a predominant sentiment polarity. This can be used in recommending a movie.



Objectives

- The work is divided into two main goals:
- How to effectively fine-tune BERT to improve accuracy measure on Movie Reviews Sentiment Analysis.
- How to compute an overall sentiment polarity of a collection of movie reviews sentiments predicted by the model.
- Contributions:
- Fine-tuning BERT by coupling with Bidirectional LSTM (BiLSTM) for polarity classification on well known benchmark datasets and achieve accuracy that beats SOTA models.
- Computing overall polarity of predicted reviews from BERT+LSTM-SA output vector.
- Comparing our experimental outcomes with results obtained from other studies, including SOTA models, on benchmark datasets.



# Our approach

- Sentiment Analysis conducted as polarity or binary classification.
- BERT is fine-tuned with BiLSTM.
- Computing overall or predominant sentiment polarity from the model output vector.

# Fine-tuning BERT with BiLSTM

- BERT is not trained from scratch
- We add two input layers to BERT
  - Attention masks
  - Input ids
- The input embeddings (input ids, attention masks) are propagated through BERT afterwards.
- BiLSTM receives information from BERT and feeds it into its dense layer, which then predicts respective classes for the input features
  - BiLSTM has a fully connected layer, which predicts the sentiment polarity.
- During fine-tuning, first layers of BERT are frozen



#### Model overview



Fig. 2. Fine-tuning of the model



Fig. 3. Overview of our work

# Classification and Overall polarity

- Binary classification
- Given a movie review *R*, classify it as carrying either a positive sentiment or a negative sentiment.
- Overall polarity
- Computed on the output of sentiment classification from BERT+BiLSTM
- The output vector is given to a heuristic algorithm which computes the predominant sentiment polarity.



## Experiments

#### Datasets Name

| Name               | Size   |
|--------------------|--------|
| IMDb Movie Reviews | 50K    |
| MR Movie Reviews   | 10.3K  |
| SST                | 11.8K  |
| Amazon             | 345.8K |

#### Experimental settings

| Batch size | Seq length | Learning<br>rate | epochs | optimizer | Loss function                |
|------------|------------|------------------|--------|-----------|------------------------------|
| 32         | 128        | 1e-4             | 5      | Adam      | Binary cross<br>entropy loss |



#### Results

#### TABLE II ACCURACY (%) COMPARISONS OF MODELS ON BENCHMARK DATASETS FOR BINARY CLASSIFICATION

TABLE III RESULTS OF ABLATION STUDY

| Model name           | Dataset |       |       |          |
|----------------------|---------|-------|-------|----------|
|                      | IMDb-2  | MR    | SST-2 | amazon-2 |
| RNN-Capsule [29]     | 84.12   | 83.80 | 82.77 | 82.68    |
| coRNN [30]           | 87.4    | 87.11 | 88.97 | 89.32    |
| TL-CNN [30]          | 87.70   | 81.5  | 87.70 | 88.12    |
| Modified LMU [28]    | 93.20   | 93.15 | 93.10 | 93.67    |
| DualCL [27]          | -       | 94.31 | 94.91 | 94.98    |
| L Mixed [31]         | 95.68   | 95.72 | -     | 95.81    |
| EFL [25]             | 96.10   | 96.90 | 96.90 | 96.91    |
| NB-weighted-BON [14] | 97.40   | -     | 96.55 | 97.55    |
| +dv-cosine           |         |       |       |          |
| SMART-RoBERTa [26]   | 96.34   | 97.5  | 96.61 | -        |
| Large                |         |       |       |          |
| Ours                 | 97.67   | 97.88 | 97.62 | 98.76    |

| Model name     | Dataset |       |          |          |
|----------------|---------|-------|----------|----------|
|                | IMDb-2  | MR    | SST-2    | amazon-2 |
| BiLSTM         | 90.42   | 90.5  | 91.12    | 92.18    |
| BERT           | 93.81   | 94.29 | 93.55.97 | 94.78    |
| BERT+BiLSTM-SA | 97.67   | 97.88 | 97.62    | 98.76    |

#### TABLE IV Overall Polarity Computation on All Datasets

| Dataset    | Original overall polarity | Computed overall polarity |
|------------|---------------------------|---------------------------|
| IMDb       | Neutral                   | Neutral                   |
| MR reviews | Neutral                   | Neutral                   |
| SST-2      | Neutral                   | Neutral                   |
| Amazon     | Positive                  | Positive                  |

- Our model outperforms all other models
- On ablation studies, BERT and BiLSTM separately give nonoptimal accuracy compared with BERT+BiLSTM.
- Computed overall polarity on BERT+BiLSTM predictions is always the same as original overall polarity before predictions.



## Conclusion

- In this work, we extended the existing domain knowledge of sentiment analysis by showing
  - How to effectively fine-tune BERT to improve accuracy measure on Movie Reviews Sentiment Analysis.
  - How to compute an overall polarity of a collection of movies reviews sentiments predicted by a model.
- We coupled BERT with BiLSTM and applied on binary classification.
- Our model outperformed other models
- The computed overall polarity from predictions is the same as the computed overall polarity from original labels
- Ablation studies also show that BERT and BiLSTM seperately provide non-optimal accuracy compared against BERT+BiLSTM-SA, implying coupling of the two tools is stronger for the model generalization.
- To the best of our knowledge, this is the first work to couple BERT with BiLSTM for Sentiment Analysis.



### Future work

- Extend the model to three-class, four-class, or any fine-grained classification.
- How to effectively apply accuracy improvement techniques to transformed BERT features despite loss of semantic information in them
- Exploring other pre-trained language models for Sentiment Analysis.
- Exploring how different components of a sentence contribute to its sentiment prediction.