Simulating Boyd's OODA Loop: Towards an ABM of Human Agency and Sensemaking in Dynamic Competitive Environments

Mark Abdollahian & Chasen Jeffries

Claremont Graduate University Chasen.Jeffries@cgu.edu

Introduction

• OODA Loop:

- Developed by military strategist John Boyd.
- Comprises four iterative phases: Observe, Orient, Decide, Act.
- Used to model decision-making processes in dynamic and competitive environments (Military, Business, Politics, etc.).

Motivation:

- Global scenarios are becoming increasingly complex, requiring advanced simulations of human decision-making.
- Exploring the impact of diverse information processing and cognitive strategies on agent fitness and survival.

Research Objective

• Objective:

- Investigate how variations in cognitive capabilities within the OODA loop affect strategic decision-making.
- Develop an agent-based model (ABM) to simulate human agency and sensemaking in dynamic, competitive environments.

• Key Questions:

- How do different levels of information processing and cognitive strategies influence agent fitness and survival?
- What role does each OODA phase play in achieving strategic advantage?

• Significance:

 Provide practical insights for improving decision-making processes in various fields (e.g., military, business, policy-making).

Background and Literature

OODA Loop

• Observe:

- Gather information from the environment.
- Collect sensory data and abstract information (e.g., changes in the competitive landscape).
- Orient:
 - Analyze and synthesize observed information.
 - Integrate new data with existing knowledge, experiences, and cultural context.
- Decide:
 - Formulate strategies, tactics, or plans.
 - Determine the best course of action based on the oriented information.
- Act:
 - Implement the chosen action, executing decisions precisely within the environment.
- Feedback:
 - Conduct single and double-loop learning to continuously update our understanding of the world, allowing for adaptation and improvement

Frost 2012

Model Design

Our OODA Model

- Agent-Based Modeling (ABM):
 - Simulation approach to model complex systems using simple rules and heterogenous agents.
 - Agents represent entities with distinct cognitive capabilities.
- Model Components:
 - **Observe**: Agents have varying levels of information sensing from local to global.
 - **Orient**: Agents possess different mental models, ranging in complexity and randomness.
 - **Decide**: Decision trees with varying depths and complexities to simulate decision-making.
 - Act: Agents execute decisions with varying costs and time horizons.
- Learning Mechanisms:
 - Single-Loop Learning: Agents update their strategies based on discrepancies between expected and actual outcomes.
 - **Double-Loop Learning**: Agents adjust their cognitive models and strategies based on the rate of change in outcomes.

Observe & Orient

- **OBSERVE**: Agents collect data from their environment.
- Observation Levels:
 - Level 1: See all resources nearby
 - Level 2: See all agents nearby
 - Level 3: See all agents and resources
 - Level 4: See all agents, resources, and the environmental landscape.

- **ORIENT**: Agents analyze and synthesize observed information.
- Mental Models:
 - Complexity: Range from simple past experiences to complex, multi-variable models.
 - Stochasticity: Degree of randomness or noise in the mental models.
- Vectors of Orientation:
 - Deterministic to stochastic processes.
 - Simple to complex mental models.

Decide & Act

- **DECIDE**: Agents determine the best course of action
- Decision Trees
 - Level 1: Move or Stay
 - Level 2: Move Resources or Competition
 - Level 3: Move halfway or all the way

- ACT: Agents implement their chosen actions.
- Action Calculus:
 - Evaluate and execute decisions with varying costs and time horizons.
 - Navigate decision trees to identify optimal actions.
- Strategic Foresight:
 - Some agents anticipate future landscape changes and adjust actions accordingly.

Model Results

Baseline & Scenario Analysis

Baseline Parameter and Results

- Purpose:
 - Establish a standard for comparing agent performance across various scenarios.
- Setup:
 - Resource Availability: Balanced distribution between scarcity and abundance.
 - Initial Agent Capabilities: Normal distributions for each OODA component.
- Simulation Metrics:
 - Resource Management: How effectively agents manage and utilize resources.
 - Survival Rates: Number of agents that survive over time.
 - Decision-Making Effectiveness: Agents' ability to navigate the OODA loop and adapt to changes.
- Initial Findings:
 - Equilibrium: Agents reach a stable equilibrium within 200 iterations.
 - Agent Performance: Moderate agents perform best, showing highest average fitness outcomes.
 - OODA Scores: Critical ability for survival is effective sensemaking (Orient phase).

TABLE 1. BASELINE INITIAL CONDITIONS AND PARAMETER VALUES

Parameters	Description	Base value
Population	Total number of agents	25
Agent Resources	The initial number of resources for agents	75:25
Environment Resources	The initial number of resources for environment	75:25
Observation Range	How many steps the agents can see around them	4:1.25
Move Cost	The resource cost for agents to move one step.	1
Regrow Time	The number of ticks it takes for the environment to regrow their resources.	1
Energy Loss	An absolute attrition value in resources for agents each tick.	1
Observe Score	The Observe Step score of agents	2.5:0.75
Complexity Score	The Complexity Step score of agents	2:1
Stochasticity Score	The Stochasticity Step score of agents	1.5:0.75
Decide Score	The Decide Step score of agents	2:0.5
Act Score	The Act Step score of Agents	1.5:0.25

Scenario 1 and 2

Scenario 1: Low Resource Landscape

- Setup:
 - Resource Scarcity: Resources range from 0 to 25 units.
 - Increased Energy Loss: Move costs doubled from 1 to 2 resources.
- Objective: Test agent adaptability in a resource-constrained environment.
- Key Insights:
 - Only Smart and Moderate agents survive.
 - Survival Strategy: High observation and orientation capabilities are critical.
 - Behavior: Smart agents remain stationary, exploiting local resources; Moderate agents actively seek out resources.

Scenario 2: Low Resource Landscape with Global Knowledge

- Setup:
 - Expanded Observation Range: Agents can perceive a wider range (0 to 20 steps).
 - Resource Scarcity: Same as Scenario 1.
- Objective: Evaluate how enhanced global awareness affects decision-making and survival.
- Key Insights:
 - Smart agents dominate due to superior OODA capacities.
 - Survival Strategy: Smart agents use strategic patience, minimizing energy expenditure by accurately assessing the landscape.
 - Behavior: Moderate and Simple agents exhaust resources quickly by moving excessively.

Scenario 3 and 4

Scenario 3: Harsh World Smart Agents

- Setup:
 - High Cognitive Capabilities: Agents have maximum OODA scores.
 - Harsh Environment: Resource scarcity and high competition.
- Objective: Assess the cost and benefit of sophisticated decision-making in a challenging environment.
- Key Insights:
 - Outcome: All agents perish within a few hundred iterations.
 - Complexity Cost: High cognitive complexity leads to increased resource expenditure.
 - Survival Challenge: Strategic complexity is resource-intensive and unsustainable in a harsh environment.

Scenario 4: Harsh World Simple Agents

- Setup:
 - Low Cognitive Capabilities: Agents have minimal OODA scores.
 - Harsh Environment: Same resource scarcity and high competition as Scenario 3.
- Objective: Compare performance of simple vs. smart agents in the same environment.
- Key Insights:
 - Outcome: Similar performance to Smart agents, with low survival rates.
 - Reactive Behavior: Simple agents rely on spontaneous, reactive actions.
 - Resource Management: Both Smart and Simple agents struggle to manage resources effectively in a resource-poor environment.

Conclusions

• Key Findings:

- OODA Loop Simulation: Demonstrates diverse cognitive capabilities' impact on agent fitness and survival.
- Orient Phase: Crucial for sensemaking and effective decision-making.

Future Work:

- Extended Scenarios: Incorporate varying degrees of competition and dynamic resource landscapes.
- Sensitivity Testing: Perform quasi-global sensitivity analysis to identify key model drivers.
- Learning Mechanisms: Explore single and double-loop learning in different competitive contexts.

Questions?

References

• S. Frost, K. Goebel, and J. Celaya, "A Briefing on Metrics and Risks for Autonomous Decision-making in Aerospace Applications," AIAA Infotech at Aerospace Conference and Exhibit 2012, 2012, doi: 10.2514/6.2012-2402.

Appendix: Model Results

Scenario 2:

Low Resource Landscape with Global Knowledge Scenario 3:

ura 10. Somario 3 Empiror

Harsh World, Smart Agents Figure 11. Scenario 4 Environment, Time Series and Phase Portrait Plots.

Baseline Results

Low Resource

Scenario 1:

Landscape

Top Left: Initial Environment Top Right: OODA Score, Outcome Phase Portrait Bottom Left: OODA Score, Outcome Time Series Plot Bottom Right: Final Environment cape with Cnowledge Scenario 4: Harsh World,

Harsh World, Simple Agents