

Design of Japanese Character Input Screen for Smartwatch

Authors: K.Hino¹, T.Mizuno¹, S.Tanaka¹, M.Shimizu¹, K.Mito¹, N.Itakura¹

¹The University of Electro-Communications (Japan)

Presenter: Kaito Hino The University of Electro-Communications kai.vs.1023@gmail.com

Kaito Hino

kai.vs.1023@gmail.com

Education:

- B.Sc. in Information Science and Technology, The University of Electro-Communications, 2021
- M.Sc. in Informatics, The University of Electro-Communications, 2023

Professional Experience:

Researcher of UEC SPRING- Present

Background

Touch

- \sim Conventional character input method \sim
- Input similar to smartphones
- Intuitive input

Problem

Small screen

- Small Button
 - → Fat Finger Problem
- High input screen occupancy

Vocal input ← Easy

Problem

- Resistance to use in public
- Operating environment (noise x)

Background

~Touch input (Japanese)~

Japanese Input

<Input Method>

Consonants: Touch

Vowels: Slide

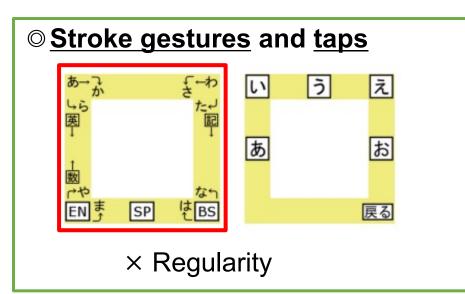
Consonants: 10 types Vowels: 5 types

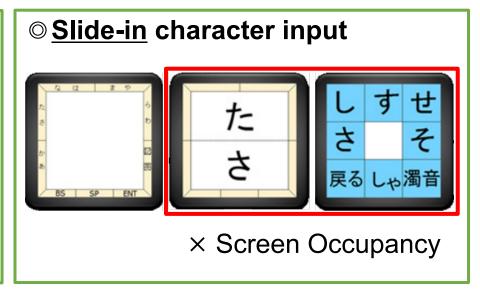
Requires about 60 choices

Problem

Small screen

- Small Button
 - → Fat Finger Problem
- High input screen occupancy




Improved input screen design

Previous Study

 \sim Input screen design for smartwatches \sim

BubbleSlide:Circular design

× Screen Occupancy


Ideal screen design


- Regular key layout ← Intuitive input
- <u>Low</u> screen occupancy

Proposed Method

Screen design

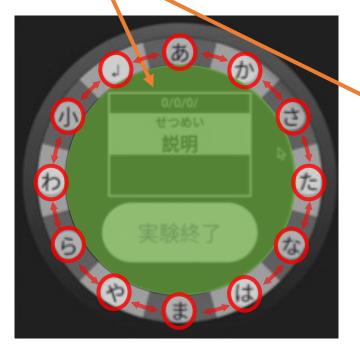
Ring

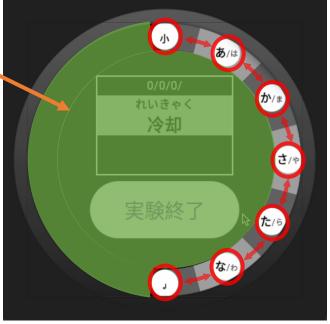
Half Ring

Proposed Method

OKey layout: Edge of screen and Circular

Low screen occupancy


Reduce <u>erroneous input</u>


Largest layout

Information Presentation Screen

 No more two adjacent keys Clockwise alignment

- •Regular arrangement
- •Designed to fit smartwatches

Proposed Method

Consonant selection

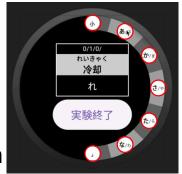
わらやまはなたさか

ろよもほのとそこお

をり みひにちしきいんるゆむふぬつすくうれ めへねてせけえ

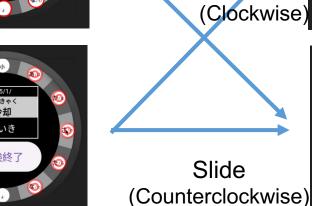
Touch

Vowel selection



Slide (Clockwise)

Slide


Half Ring

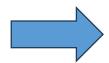
(d)

Touch

Double Touch

Experiment

Method


- Subject: 8 persons (Different subjects in experiments Haptic and Visual)
- Device : Google Pixel Watch 2
- Wearing the device on the non-dominant arm
- Seated state

<Task>

Input words : 2 set

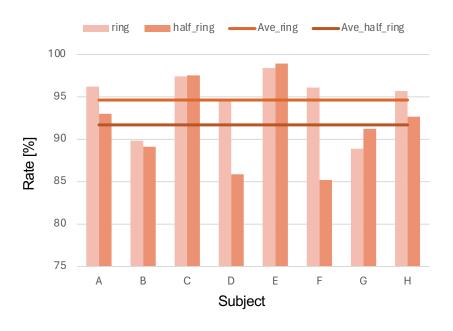
1 set = 30 words


1 word = 4 ~ 6 characters

Total: 300 characters

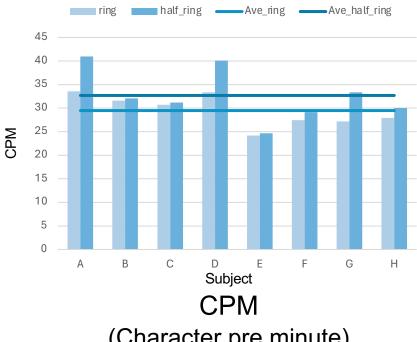
<Measurement Data>

- ○Touch log
 - Time
 - Input Character
 - Touch Coordinates etc.



CPM (Character Per Minute)

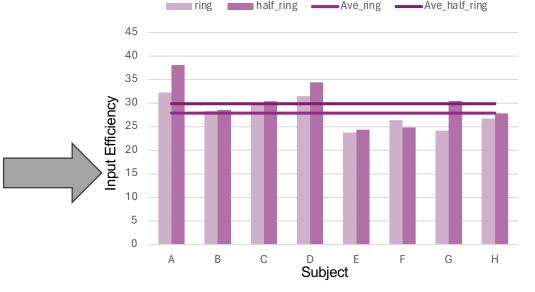
Input Rate


Result

Input Rate

- Ring tend to be higher than Half Ring
- Large difference between subjects D and F

(Character pre minute)


Half Ring higher than Ring for all subjects

[Input Efficiency]

- = [Input Rate] * [CPM]
- Ability to input characters accurately and quickly
- Comprehensive evaluation of the user's input ability.

Input Efficiency

Comparison with conventional methods

	Stroke	SliT	Bubble Slide	Proposed Method	
	gesture			Ring	Half Ring
СРМ	18.2	28.7	28	29.5	32.7
Input Rate	94.4	95.3	92	94.6	91.7
Input Efficiency	17.2	27.4	25.8	27.9	30.0

- Ring tended to have higher input efficiency than Half Ring.
- The two proposed methods have higher performance than conventional methods.

Consideration

OInput Rate, CPM, Input Efficiency

- Input Rate : Ring > Half Ring trend <Ring>
 - Clockwise key arrangement → Intuitive Input
 Half Ring>
 - Use of touch or double touch for consonant selection
- CPM : Ring < Half Ring (All Subject)
 <Ring>
 - Slide left side with right hand \rightarrow Finger covers screen <Half Ring>
 - Half Ring has only one side of input area → shorter slide distance
- Input Efficiency : Ring < Half Ring trend
 - Half Ring has better design potential

Proposed method and Conventional method

- Input Efficiency: Proposed method > Conventional method
 - → Usability of Proposed method

Conclusion

Purpose

• Design of the input screen design to make it easier to input characters on a smartwatch.

Proposed Method

	Ring	Half Ring	
CPM	29.5	32.7	
Input Rate	94.6	91.7	
Input Efficiency	27.9	30.0	

- Half Ring has higher CPM, Input Efficiency, and is possibly superior.
- The performance of the two proposed methods is superior to that of the conventional method.

Future Prospect

- Collect data on more subjects, identify and solve problems
- Investigation of character input screen design for other languages

Thank you for your attention.