Comparative Assessment of 2D and Mixed Reality Interfaces for Improving Situational Awareness

Nazım Yiğit KAVASOĞLU ^{1,2}, Gökhan İNCE ¹

¹ İstanbul Technical University, İstanbul, Turkey ² ASELSAN, Ankara, Turkey

Contact email: nykavasoglu@aselsan.com

Nazım Yiğit Kavasoğlu

- Master's degree in computer engineering in İstanbul Technical University in 2023.
- Working at ASELSAN as a software engineer since 2018.
- Research interests are
 - User interface and experience
 - Computer vision
 - Machine learning

Aim and Contribution

Our study,

- Aims to improve academic knowledge and practical use of MR user interfaces in security scenarios.
- Intends to contribute to the academic understanding and practical implementation of MR user interfaces in military settings.

Introduction

- Challenges,
 - Environmental conditions
 - fog,
 - darkness
 - harsh weather
 - The lack of knowledge and experience
- To address these challenges, we have developed an application within this study.
- Measured the effectiveness
 - task completion times
 - navigation accuracy
 - participant feedback through questionnaires

Proposed Physical Security Applications

• The maintenance of border security holds significant importance.

Overview of the Proposed System

Radar and Web Server

- Example tracked target location data is presented such as {"trackId":1, "latitude":39.71, "longitude": 32.15, "horizontal":43.7, "vertical":28.2}.
- The haversine formula is used for calculating distances
 between two points on a spherical surface using the coordinates of the two locations.

Mobile Application

• It is a 2D map-based user interface.

Ego Location Tracked Target Location

MR Application

- MR application is deployed on a head-mounted display.
- A red color layer is added to the target object to improve visibility.

MR Application

 MR Engine (right panel) and Realworld (left panel) coordinate systems

• HMD draw distance

Experiments

Participants

Group	Number of Participant	Prior experience
Group 1 – Mobile Application	15	%100
Group 2 – MR Application	15	%53

Evaluation Metrics

- Objective measurements
 - Task completion time
 - Navigation accuracy

- Subjective measurement surveys
 - NASA Task Load Index (TLX)
 - Post Study System Usability Questionnaire (PSSUQ).

• Task completion performance

Group	Time (min.)
Group 1 – Mobile Application	3:37 ± 1:01
Group 2 – MR Application	2:54 ± 0:28

• Navigation accuracy

Group	Error (meters)
Group 1 – Mobile Application	6.60 ± 2.10
Group 2 – MR Application	3.17 ± 1.34

• NASA TLX Questionnaire

Results of PSSUQ

• Post Study System Usability Questionnaire

Post Study System Usability Questionnaire

System Usefulness

Results of PSSUQ

Post Study System Usability Questionnaire
 Information Quality

Results of PSSUQ

Post Study System Usability Questionnaire
 Interface Quality

Discussion

- Findings show that MR technology significantly improves situational awareness for security personnel.
- We've explored several methods to optimize MR usage,
 - Using navigation arrows
 - Utilizing celestial cues like the sun and moon,
 - Integrating elevation maps to refine object placement
 - Testing with varied and complex security scenarios

Conclusion

- Based on the tests conducted using the MR application resulted in an enhanced SA.
- MR application was more efficient than mobile application in terms of task completion time and deflections from the ideal route.
- Results of questionnaires, the mobile application was easier to learn than the MR application.
- MR application users reached productivity faster.