Co-Design of an Adaptive User Interface for the Visually Impaired People

A. Ambles, D. Groux-Leclet, A. Potelle

University of Picardie Jules Verne, Amiens, France audrey.ambles@u-picardie.fr

ACHI 2024, The Seventeenth International Conference on Advances in Computer-Human Interactions

May 26-30, 2024 Barcelona, Spain

About Me

- Name: Audrey Ambles
- Designation: Ph.D. student
- Affiliation: Laboratory MIS, University of Picardie Jules Verne, Amiens, France
- Research Interests:
 - Human-Computer Interaction
 - Human-Centered Design
 - Adaptive User Interface
 - Multisensory Experiences
 - Virtual Reality

Contents

- 1. Background and Research Aims
- 2. Co-Design Method
- 3. Our Proposed Interface
- 4. Evaluation
- 5. Results
- 6. Conclusion and Future Work

1. Background and Research Aims

- Heritage digitization is increasing, the visually impaired do not have access to it
- We plan to create a multisensory device that allows access to 3D models
- We started with the sense of sight because it is the dominant sense
- The visually impaired are a heterogeneous population due to the various visual conditions and pathologies

Figures – Various pathologies, from left to right: alaucoma, age-related macular degeneration, cataracts, diabetic retinopathy, retinitis pigmentosa from https://www.unadev.com/le-handicap-visuel/les-principales-pathologies/

- **Aim:** Utilize the residual vision of the visually impaired to improve 3D object recognition
- **How:** Develop an alternative device adapted for all the visually impaired, based on the use of an ordinary 2D screen

2. Co-Design Method

- Co-Design
 - User-Centered Design
 - Gather user inputs and convert them into design choices
 - Four phases
 - Analysis
 - Questionnaires, interviews, observation methods
 - Ideation
 - · Brainstorming, brainwriting, focus group
 - Design
 - Mock-ups (paper, video, digital)
 - Evaluation
 - User-centered, heuristic, analytical evaluation
- Co-Design with Visually Impaired
 - Adapt interactions, workshops and tools

2. Co-Design Method

- Co-Design
 - User-Centered Design
 - Gather user inputs and convert them into design choices
 - Four phases
 - Analysis
 - Questionnaires, interviews, observation methods
 - Ideation
 - Brainstorming, brainwriting, focus group
 - Design
 - Mock-ups (paper, video, digital)
 - Evaluation
 - User-centered, heuristic, analytical evaluation
- Co-Design with Visually Impaired
 - Adapt interactions, workshops and tools
 - Meet in the morning for an hour and a half, in a small group
 - Select tools that depend on hearing

3. Our Proposed Interface

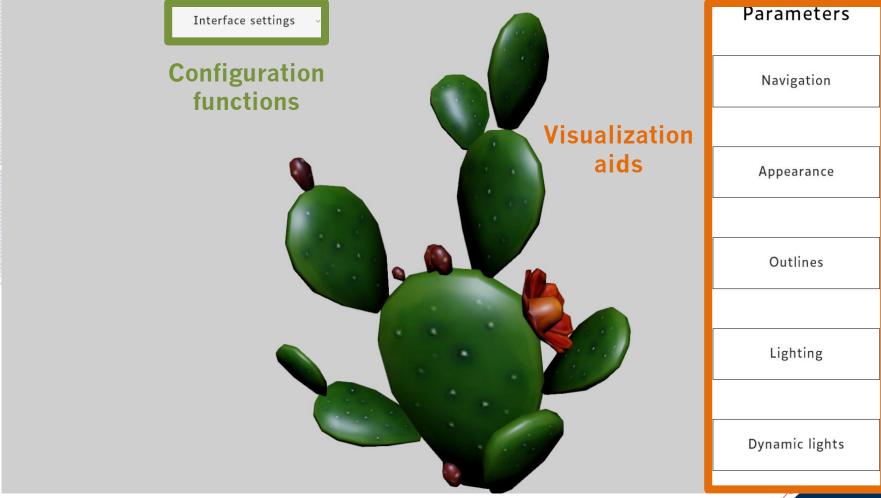


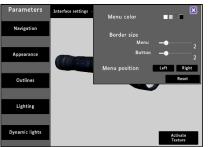
Figure – Our 2D visualization interface for 3D objects. The 3D object shown here is a cactus.

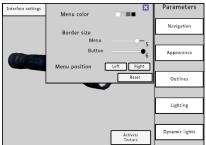
Background Co-Design Interface Evaluation Results Conclusion

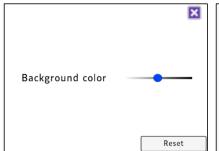
3. Our Proposed Interface

Configurations functions

- Font Menu
 - Type
 - Size
 - Bold


- **Menu** Menu
 - Theme
 - Borders
 - Position


- **Background** Menu
 - Background contrast



Figures – Examples of font configurations.

Figures – Examples of menu configurations.

Figures - Left: the background menu. Right: A high-contrast background.

Background > Co-Design

Evaluation

Results

Conclusion

3. Our Proposed Interface

Visualization aids

- Zoom and object navigation
- Appearance adjustment
 - Sharpness
 - Contrast
 - Brightness
 - Saturation
- Texture substitution
 - Striped texture
- Outlines
 - Depth
 - o Normal
 - Color
- Lighting effects
 - Static
 - Dynamic

Background

Figure – When handled, a cylinder turns out to be a soda can.

Figure – A travel mug without and with appearance adjustment.

Figure – A plate with a striped texture accentuates the concave areas.

Figure – A flashlight with normal outlines, highlight the object's relief.

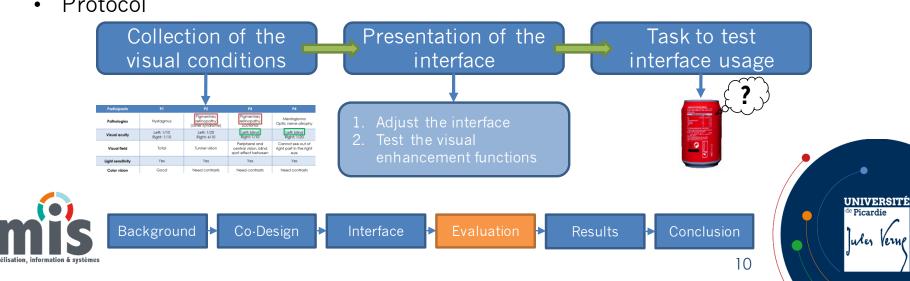
Co-Design

Interface

Evaluation

Results

Conclusion


4. Evaluation

Participants

Participants	Participants P1		Р3	P4	
Pathologies	Nystagmus	Retinitis Pigmentosa (Usher syndrome)	Retinitis Pigmentosa Scotoma	Meningioma Optic nerve atrophy	
Visual acuity	Left: 1/10 Right: 1/10	Left: 1/20 Right: 4/10	Left: blind Right: 1/10	Left: blind Rignt: 1/20	
Visual field	Total	Tunnel vision	Peripheral and central vision, blind spot effect between	Cannot see out of right part in the right eye	
Light sensitivity	Yes	Yes	Yes	Yes	
Color vision	Good	Need contrasts	Need contrasts	Need contrasts	

Table – Four visually impaired, each with distinct pathologies and visual conditions.

Protocol

5. Results

- 80 questions evaluated for usability
- Usability is highly satisfactory
 - o "yes" responses exceed 75% for all criteria
- Difficulties encountered generally correspond to the visual conditions of the participants

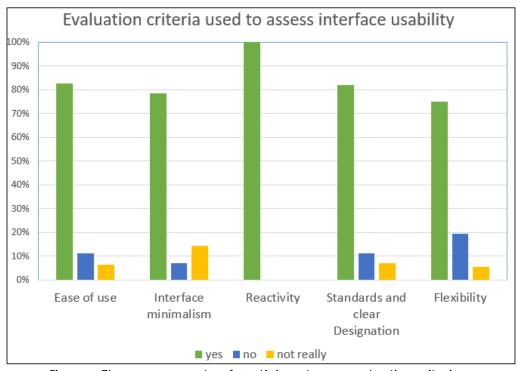


Figure – The response rate of participants per evaluation criterion.

5. Results

- Participants could customize the interface according to their preferences
- Each configuration varied
 - This demonstrates the link between the participant's visual conditions and their needs

ı	Elements		P2	P3	P4
	Туре	Luciole	Luciole	Luciole	Luciole
Font	Size	4	10 (max)	10 (max)	10 (max)
	Bold	No	No	Yes	Yes
	Theme	White	Black	Black	White
Menu	Menu borders	5 (max)	2	5 (max)	5 (max)
Wiellu	Button borders	5 (max)	1 (min)	5 (max)	5 (max)
	Menu position	Left	Left	Left	Right
3D model background		White	Dark grey	Black	White

Table - Interface settings chosen by each participant.

These settings highlight the importance of customizing interfaces

6. Conclusion and Future Works

Conclusion

- We present a visualization interface for 3D objects recognition designed for visually impaired, using a 2D standard screen
- The interface provides both configuration functions and visualization aids to assist users with their residual vision
- It was evaluated by participant with various visual conditions, and the usability is satisfactory
- We need to adjust the interface based on the participants' feedback
- There are configuration similarities among people with similar conditions

Future Works

- Complete visually impaired users' profile
- Focus on other visualization aid functionalities
- Add other senses to our device

Thank you for your attention

