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Introduction

 this development is a part of our software

 in MYNTS, fluid transport modeling is based on 
conservation of mass, molar and energy flows
Darcy-Weisbach pipeline pressure drop formula, with empirical friction 
term by Nikuradse and Hofer

equation of state computation by simplified analytical Papay model 
or more complex ISO-norm models AGA8-DC92 and GERG2008

customer-specific models of compressors and pumps

 this work describes in details the modeling of mixing flows and 
temperature in MYNTS

Multi-phYsics 

NeTwork Simulator
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Modeling of mixing flows

fluid transport network is a directed graph
described by an incidence matrix Ine 
each edge e has nonzero entries for the nodes n 
that this edge connects

−1 for the node that edge comes from, 
+1 for the node that edge enters

variables: Vn is the volume assigned to the node
ρn is the mass density; me is the mass flow in an edge
µn/e is the molar mass
xn/e are the mole fractions of fluid components
 t is time (dynamic simulation)

Ineme>0

μe
-1, xe

μn
-1, xn

Ineme<0
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Modeling of mixing flows

mixing fluid flows are described by following equations
Kirchhoff eqn: mass conservation
mixing eqs: molar count conservation

Ineme>0

μe
-1, xe

μn
-1, xn

Ineme<0
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Modeling of mixing flows

mixing fluid flows are described by following equations
Ineme>0

μe
-1, xe

μn
-1, xn

Ineme<0

change of
mass in 
the node

mass flow 
in the node
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Modeling of mixing flows

mixing fluid flows are described by following equations
Ineme>0

μe
-1, xe

μn
-1, xn

Ineme<0

change of
mole count
in the node

molar flow 
in the node
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Modeling of mixing flows

mixing fluid flows are described by following equations
Ineme>0

μe
-1, xe

μn
-1, xn

Ineme<0

change of
component
mole count
in the node

component
molar flow 
in the node
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Modeling of mixing flows

more convenient form, resolved with respect to derivatives

boundary conditions in entry nodes: µ = µset , x = xset
startup: zero massflows, all eqs initially satisfied
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Temperature modeling

variables: U is the molar internal energy
H = U + P µ/ρ is the molar enthalpy, P is the pressure

equations: energy conservation for open systems

change of
internal 
energy
in the node

flow of 
enthalpy
in the node

includes work of 
pressure force at 
the boundary
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Temperature modeling

more convenient form

boundary conditions in entry nodes: H = Hset , or T = Tset

gravitational and kinetic terms: H → H + µgh + µv2 /2, where g is the 
acceleration of free fall, h is the height, and v is the speed of the fluid

HT -constraint:

Hmod is the thermodynamic model for enthalpy, 
cp = ∂Hmod /∂T is the molar heat capacity

(exact)
(linearized)
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Temperature modeling

 ISO norm GERG2008 used as thermodynamic model
 linearized eqn makes mixing subsystem linear at each iteration step

other equations

default element equation (transport of enthalpy)
applicable to valves, regulators, resistors and shortcuts
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Temperature modeling

pipe equation:

describes heat exchange with soil: Tsoil is soil temperature, D is pipe 
diameter, L is pipe length, cht is heat transfer coefficient

compressor equation:

describes isentropic compression: κ is isentropic exponent, 
η is isentropic efficiency, z is compressibility factor
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Temperature modeling

coolers and heaters:

 is a linearization of clamp formulas: Te = min(Tn1 , Tset) for coolers and 
Te =max(Tn1 , Tset) for heaters

Algorithm (active set):
cooler: if(Aset==1&&He>Hn1) then Aset=0; if(Aset==0&&Te>Tset) then Aset=1
heater: if(Aset==1&&He<Hn1) then Aset=0; if(Aset==0&&Te<Tset) then Aset=1
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Numerical experiments

 test network
100 nodes
111 edges
2 entries
3 exits
4 compressors
in 2 stations

filled with 
nat.gas
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Numerical experiments

evolution of
 (a) inverse
molar mass

 (b) combustion
heat value

 (c) methane
fraction

 (d) absolute 
temperature

after startup oscillations, solution goes to stationarity
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Numerical experiments

hydrogen and carbon dioxide pipelines 
L = 150km D = 0.5m nsubdiv = 50
one valve inbetween
used for testing of the temperature 
modeling and simulation of shockwaves

n0000 n0025 n0026 n0050
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Conclusion

 this work presents a new numerically efficient implementation of flow 
mixing algorithms in dynamic simulation of pipeline fluid transport

mixed characteristics include molar mass, heat value, chemical 
composition and the temperature of the transported fluids

 in the absence of chemical reactions, the modeling is based on the 
universal conservation laws for molar flows and total energy

 the modeling formulates a sequence of linear systems, solved by a sparse 
linear solver, typically in one iteration per integration step

 the functionality and stability of the developed simulation methods have 
been tested on a number of realistic network scenarios
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