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Motivation

• Understanding the effectiveness of fault-tolerance mechanisms in handling 

hardware/software failures

• Analysing the logs to create error profiles

• Using the results in EU DECICE Project

• Enhancing the anomaly detection capabilities of AI models

• Feeding cluster data into the Digital Twin for real-time monitoring and diagnostics
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Background on Cluster Faults

Fault-tolerance: The ability of a system to continue operating in 

the presence of failures and to automatically heal itself

• Common faults in clusters:

• Hardware Failures: Node, network, and storage failures

• Software Failures: Application crashes, operating system 

failures, middleware issues

• Human Errors: Configuration errors, operational mistakes

• Environmental Factors: Power outages, cooling failures
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Kubernetes Architecture
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Fault-Tolerance in Kubernetes

• Self-Healing: Automatic container restarts

• Replication: Ensures redundancy of pods

• Horizontal Pod Autoscaler (HPA): Adjusts the number of pods based on usage

• CRIU (Checkpoint/Restore): Facilitates live migration and rollbacks

• RAFT Protocol: Maintains state consistency with leader elections (ETCD)
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Slurm Architecture
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Fault-Tolerance in Slurm

• Node Failover: Reassigns jobs from failed nodes

• Job Checkpointing: Saves state for restart

• Health Checks: Monitors node health

• Job Requeueing: Failed jobs are requeued on healthy nodes
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Methodology: Comparative Analysis

Kubernetes Cluster

Resources:
● 3 Master / 6 Worker nodes
● 52 Cores / 203 GB Memory

Data Collection:
● EFK Stack (Elasticsearch, Fluentd, Kibana)
● 1.8M log messages

HPC Cluster (SCC)

Resources:
● 410 Compute nodes
● 18.376 Cores / 99 TB Memory

Data Collection:
● Slurm agent logs
● 1.2M log messages
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Labelling mechanism LLM Tools
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Error Distribution in 
Slurm

Impact: Highlights node initialization 

and resource management issues

Error messages that are less than 0.10% are neglected 

for presentation purposes.
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Error Distribution in 
Kubernetes

Impact: Emphasizes network and API 

communication issues

Error messages that are less than 4% are neglected for 

presentation purposes.
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Kubernetes vs Slurm

Recovery Time
● Kubernetes is faster due to self-healing and 

replication
● Slurm depends on node failover

Fault Detection
● Kubernetes robust with software health checks
● Slurm relies on node health checks

Overhead
● Kubernetes higher due to abstraction layers
● Slurm lower due to simpler fault detection 

mechanisms
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Key 
Insights

Kubernetes excels in scalability, 
dynamic environments, quick recovery

Slurm is optimal for traditional HPC 
with efficient scheduling and resource 
management

Recommendation: Hybrid models 
leveraging both Kubernetes and Slurm 
strengths could enhance HPC 
resilience
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Conclusion

• Fault-tolerance mechanisms of Slurm and Kubernetes were investigated

• Error distribution profiles were created for both platforms

• API communication issues on Kubernetes

• Job initialization issues on Slurm

Future Work

• Collecting more data to gain better insights

• Exploring AI-based general purpose predictive fault management, 

hybrid models for fault-tolerance in DECICE
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Quick Review

• Fault-Tolerance Importance: Ensures resilience and continuous operation in HPC systems

• Kubernetes:
• Container orchestration platform

• Fault-Tolerance Mechanisms: Self-healing (automatic pod restarts), replication, Horizontal Pod Autoscaler 
(HPA), RAFT protocol for state consistency

• Best suited for dynamic, cloud-native environments with scalable workloads

• Kubernetes Strengths: Fast recovery, robust detection, self-healing mechanisms

• Slurm:
• HPC workload manager designed for large-scale computational jobs

• Fault-Tolerance Mechanisms: Node failover, job checkpointing, health checks, job requeuing

• Optimized for traditional HPC systems focusing on resource scheduling and minimal overhead

• Slurm Strengths: Efficient resource use, tailored for traditional HPC, node and job management
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