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• Research Assistant at Ostfalia University of Applied 
Sciences

Current Role:

• Bachelor’s in Electrical Engineering from Ostfalia 
University of Applied Sciences

• Master’s in Electrical Engineering from Technical 
University of Braunschweig

• 3 years of experience in robotics systems

• Over 1 years of experience in autonomous driving

Background:

• Autonomous vehicles

• Machine learning for decision-making systems

Research Interests:
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Collaborative Background: Joint research on 
autonomous driving technologies by Ostfalia and 
TU Clausthal.

Project Goal: Providing a practical autonomous 
driving experience and research platform by 
showcasing autonomous bus scenario.

Research Significance: Enhances practical 
teaching by linking theoretical knowledge with 
practical applications.
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Advanced Decision Making

• Safety-critical car-following models

• Adaptive Cruise Control (ACC) 

• Automatic Emergency Braking 

(AEB)

Generated from Chatgpt AI

Traditional Decision 
Making methods

Learning-Based 
Approaches (RL)



Problem Formulation

02.10.2024 Application of a Maneuver-Based Decision Making Approach for an Autonomous System Using a Learning Approach; Xin Xing 6

Simulate real-world driving to test 

ACC and AEB.

Touch on the specific RL methods 

used, such as Policy Gradient (PG) 
and Proximal Policy Optimization 
(PPO)

Partially Observable Markov 

Decision Processes (POMDP) for 
representing interactions in the 
driving environment



Policy-based Reinforcement Learning
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• Policy Gradient (PG):

− Overview: A reinforcement learning 

technique that adjusts policy directly 

based on the gradient of the expected 

reward.

− Key Feature: Uses gradient ascent to 

incrementally improve policy decisions 

based on rewards.

− Application: Ideal for environments 

where the policy needs continuous 

refinement.
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Policy-based Reinforcement Learning
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• Proximal Policy Optimization (PPO):

− Overview: An advanced policy gradient 

method that improves upon earlier 

techniques by limiting changes in policy 

updates.

− Key Feature: Utilizes a clipping mechanism 

to prevent too drastic policy updates, 

ensuring more stable learning.

− Advantages: Provides better sample 

efficiency and more consistent learning 

performance compared to standard PG.

Environment

Actor Network

Critic Network Advantage Function

PPO Loss Clipped

CPI

Critic Loss

Update policy parameters

Update critic parameters

Actor-Critic 

PPO
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Methodology – Simulation Environment
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Intelligent Driver Model (IDM) for ACC:

− Desired velocity: 30 𝑘𝑚/ℎ

− Safe time headway: 1.5 𝑠

− Minimum distance: 7 𝑚

− Acceleration: ±1.5 𝑚/𝑠2



Methodology – Simulation Environment

02.10.2024 Application of a Maneuver-Based Decision Making Approach for an Autonomous System Using a Learning Approach; Xin Xing 10

Leading Vehicle with 

speed of 20 km/h

A yellow duck appears randomly 

after 4s

If the car does not brake in time, 

the car will collide with

the duck.



Methodology – Simulation Environment
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• Action Space:

− ACC 

− AEB

• State Space

− 𝑉𝐴𝑉

− 𝑉𝐿𝑉

− 𝐺

− 𝐴

Reward Function 
for ACC

Reward for distance 
between vehicles

Reward for velocity 
difference between 
vehicles

Reward Function 
for AEB

Reward for the 
occurrence of a 
collision

Reward for distance 
between vehicles

Reward Function 
for comfort

Reward for harsh 
braking



Training Architecture
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• Training Environment:

• Creating Gym Environment

• Components from Webots [3]:

• Driver and Supervisor 

Modules

• Sensors and Actuators

• RL Framework:

• Policy-based Algorithms

• Simulation Feedback Loop

Supervisor

Driver 1 Driver 1 Obstacle

Open AI Gym Env

Webots
PG or PPO 

Algorithm
a

s, r, a´



Evaluation of Results
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PPO shows faster convergence compared to PG
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PPO leads to better overall system reliability and response accuracy compared to PG

Algorithm

Wrong behavior or 

collision / %

AEB Selection / %

PG 1.5 24.85

PPO 0.3 1.0



Conclusions and Future Directions
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• Key Results:

− Effective Selection: Both PG and PPO successfully manage ACC and AEB system 

selections for routine and emergency maneuvers.

− Algorithm Performance:

o PPO shows faster convergence, achieving stable reward values significantly quicker than PG.

o PPO maintains a lower error rate (0.3%) in follow-up tests compared to PG (1.5%).

− Insights: Validate the feasibility of RL in automating maneuver-based decision-making for 

driving.



Conclusions and Future Directions

02.10.2024 Application of a Maneuver-Based Decision Making Approach for an Autonomous System Using a Learning Approach; Xin Xing 17

• Current Limitations and Future Work:

− Simulation Complexity: Current simulations are relatively simple and may not fully represent complex real-

world driving scenarios.

− Sensor Technology: Emphasize the need for more advanced sensor integration to enhance simulation 

accuracy and applicability.

− Further Developments:

o Suggest expanding training environments to include more diverse traffic conditions and overtaking 

scenarios.

o Plan to validate and optimize models within the ExerShuttle project in real-world conditions.

− Broader Integration: Advocate for incorporating a wider range of driving behaviors into training models, 

ensuring comprehensive testing and validation.
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