
MORUS-PRNG: a Hardware 
Accelerator Based on the MORUS 
Cipher and the IXIAM Framework

Alessio Medaglini, Mirco Mannino, Biagio Peccerillo, Sandro Bartolini

Email: alessio.medaglini@unisi.it
Department of Information Engineering and Mathematics, University of Siena, Italy

8th International Conference on Advanced Engineering Computing and Applications in Sciences

Session: Hardware Accelerators and Accelerated Programming 

29th September, 2024



Software engineer and research fellow in the Department of Information

Engineering and Mathematical Sciences at the University of Siena.

Research topics:

✵ High performance computing

✵ Embedded and cyber-physical systems

My Resume

2

Ph.D. in Information Engineering from the University of Siena with a thesis titled “Object Detection and

Tracking for Multi-Sensor Autonomous Driving Systems”.

Work experience as Software Engineer at Thales-GTS Italy, developing an autonomous driving and

collision avoidance system for the urban railway in Florence.

✵ Software resiliency

✵ Cybersecurity



The generation of random numbers is needed for many important applications,

from numerical analysis to cryptography and security.

PRNG Introduction

3

To generate such a pseudo-random number sequence a hardware or software module implementing

the generation algorithm is used. This module is called Pseudo-Random Number Generator (PRNG).

Good news: for most applications, a number sequence generated

deterministically that looks random enough is sufficient.

Bad news: truly random numbers are difficult to generate.



PRNG implementation usually based on ciphers, which must present randomness properties.

The MORUS cipher is one of the finalist in the CAESAR competition from NIST:

MORUS: a NIST Cipher

4

✵ MORUS cipher family includes 3 ciphers with different internal state and key sizes. Each has an

internal state of 5 blocks that can have 128 or 256 bits each and deal with 128- or 256-bit keys.

✵ MORUS can be efficiently implemented both in software and hardware, since it uses only AND, 

XOR, shift and rotation operations.

✵ MORUS is “authenticated” because the encryption phase produces also a tag that can be used to 

verify decryption, providing both confidentiality and integrity.



MORUS: how it works

5

✵ Initialization reads key and Initial Value and run StateUpdate 

function 16 times, mixing them together into the internal state;

✵ Encryption processes one block of plain-text at a time, encrypting it 

with a StateUpdate call that mixes plain-text with internal state;

✵ Finalization performs a tag generation (out of our scope);

✵ Decryption is analogous to the Encryption (out of our scope).

The StateUpdate function consists of 5 rounds in which each block of

the internal state is updated using some basic operations.



IXIAM Framework

6

ISA eXtension for Integrated Accelerator Management (IXIAM)

is a hardware-software framework for SoCs composed by:

✵ reservation queue and status register for each accelerator;

✵ core- and accelerator- interconnect interface;

✵ user-space interrupt module.

It allows controlling accelerators directly from the cores,

ensuring low communication latency and significant

performance advantages over drivers.



Our Proposal

7

✵ MORUS PRNG Engine for number generation;

✵ Output buffer to place array of generated numbers in;

✵ Register file to hold the amount of numbers to be

generated and four key registers;

✵ Controller responsible for managing the IXIAM packets;

✵ IXIAM HW infrastructure with a status register and a

reservation queue.

We propose an integrated MORUS-based PRNG hardware accelerator based on the IXIAM framework:



1. Load values into the initial state: the user is responsible for writing the four words composing the

128-bit key, used as seed for the generator;

2. Trigger initialization: when the accelerator receives the EXEC packet from IXIAM, the MORUS

PRNG Engine loads key and initial value and execute the MORUS initialize procedure;

3. MORUS initialized: the engine is ready to perform encryptions, necessary to generate pseudo-

random numbers. An internal 128-bit counter, inaccessible from outside, is set to 0.

Our Proposal: Initialize operation

8

The Initialize operation is responsible for triggering the initialization phase in the MORUS cipher:



1. Reading of register N: register written by the user and interpreted by the engine as the amount of

32-bit pseudo-random numbers to generate;

2. Pseudo-random number generation: performed by encrypting the content of the internal

counter. At each step, a 128-bit block of ciphertext, which can be interpreted as four 32-bit

numbers, is generated this way.

3. Output buffer: the generated numbers are written into the output buffer starting from address 0.

Our Proposal: Generate operation

9

The Generate operation performs the encryption phase in the underlying MORUS cipher:



Evaluation

10

Implementation based on the gem5 architecture simulator, with a Generator class in C++ wrapping

communication to the accelerator. It executes Initialize when constructed and exposes two methods:

✵ operator(): outputs a single generated number, we design two variants of it:

❖ naïve: generates 1 number on the accelerator and returns it to the caller;

❖ buffered: generates few numbers on accelerator and returns a buffered number at each call.

✵ Generate: fills an array with N generated numbers;

To evaluate our solution, we compare it with other PRNGs defined in the random C++ header.

Performance is measured in CPU cycles (lower is better).



Results

11

✵ Generate outperforms other
PRNGs. Performance gap rising
with size up to 4.26x.



Results

11

✵ Generate outperforms other
PRNGs. Performance gap rising
with size up to 4.26x.

✵ Naïve pays latency in
communication between CPU
and accelerator.



Results

11

✵ Generate outperforms other
PRNGs. Performance gap rising
with size up to 4.26x.

✵ Naïve pays latency in
communication between CPU
and accelerator.

✵ Buffered outperforms other
PRNGs for size greater than 11.
Speedup up to 2.07×.



Results

11

✵ Generate outperforms other
PRNGs. Performance gap rising
with size up to 4.26x.

✵ Naïve pays latency in
communication between CPU
and accelerator.

✵ Buffered outperforms other
PRNGs for size greater than 11.
Speedup up to 2.07×.

✵ MORUS-sw is faster than all
the other PRNGs for sizes
between 12 and 196.



Conclusion

12

✵ In this work, an integrated accelerator for pseudo-random number generation based on the

MORUS cipher was proposed.

✵ We designed it to communicate with the CPU through the IXIAM framework, which allows

users to control it directly with CPU instructions ensuring a lower latency.

✵ We evaluated it in a simulated environment in the gem5 architectural simulator, comparing

its performance against PRNGs included in the C ++ standard library.

✵ We showed that it is able to outperform them.



Thank you 

for your attention 

Email

alessio.medaglini@unisi.it
Alessio Medaglini

Any questions?


	Diapositiva 1
	Diapositiva 2
	Diapositiva 3
	Diapositiva 4
	Diapositiva 5
	Diapositiva 6
	Diapositiva 7
	Diapositiva 8
	Diapositiva 9
	Diapositiva 10
	Diapositiva 11
	Diapositiva 12
	Diapositiva 13
	Diapositiva 14
	Diapositiva 15
	Diapositiva 16

