Accelerating Differential Privacy-Based Federated Learning Systems

Mirco Mannino, Alessio Medaglini, Biagio Peccerillo, and Sandro Bartolini

Department of Information Engineering and Mathematics University of Siena, Italy

e-mail: mannino@diism.unisi.it

18th International Conference on Advanced Engineering Computing and Applications in Sciences (ADVCOMP) 2024 Special Session: Hardware Accelerators and Accelerated Programming (HAAP)

29th September, 2024

ABOUT ME

- PhD student at University of Siena, Italy
- Research interests:
 - Computer Architecture
 - Architectural Simulation
 - Hardware Accelerators
 - Virtual Memory
 - Deep Learning
- Work Experience:
 - CPU Architect Intern (Huawei R&D, Cambridge UK)
 - SW Embedded Developer (AidiLAB, Siena, IT)

Motivation and Background

Training Using Data Collected on-the-edge

CONVENTIONAL APPROACH

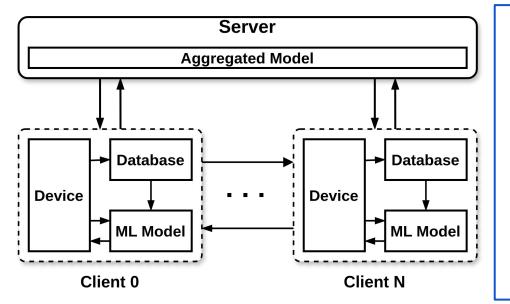
- 1. Collect data on edge devices (e.g., smartphone)
- 2. Send data to a central server
- 3. Train machine learning models in the server
- 4. Share the trained model to edge devices

It can lead to several **disadvantages**:

- Performance degradation
- Lack of privacy

Federated Learning (1)

- Federated Learning (FL) was Introduced by Google in 2017
- It is a distributed training approach



MAIN STEPS

- 1. The server shares an untrained model among clients
- 2. Each client performs a local training procedure using its own data
- 3. Clients send trained models to the central server
- 4. The server aggregates them into an updated model
- 5. The server shares the updated model among clients.

Federated Learning (2)

ADVANTAGES

- User data privacy protection
- Improved model accuracy and diversity
- Bandwidth efficiency

DISADVANTAGES

- Implementation Complexity
- (Possible) Missing HW resources in edge devices

Federated Learning (3)

HOW TO ENSURE USER PRIVACY?

- A key aspect in FL is ensuring the privacy of data collected locally
- Differential Privacy (DP) is one of the promising approaches to ensure user data privacy

DIFFERENTIAL PRIVACY

- Add noise to either data or model guarantee privacy
- Popular approaches:
 - Local Differential Privacy techniques
 - Differential Privacy-based distributed Stochastic Gradient Descent
 - Differential Privacy meta learning

Federated Learning (4)

HARDWARE RESOURCES

- Usually, edge devices are thought for inference, not training
- Acceleration can be achieved in different ways:
 - Graphics Processing Unit (GPU)
 - Field Programmable Gate Array (FPGA)
 - Application Specific Integrated Circuit (ASIC)
- Devices need to be efficiently readapted to meet training needs

Federated Learning Processing Unit (Possible ideas)

New Challenges

An efficient implementation of Differential Privacy-based Federated Learning system requires:

- **Robust framework** allowing the orchestration of all the players in the system
- Algorithmic improvement for Differential Privacy, both on client and server side
- **Specialized hardware** in heterogeneous architectures to accelerate common operations, ensuring energy efficiency

New Challenges

An efficient implementation of Differential Privacy-based Federated Learning system requires:

• **Robust framework** allowing the orchestration of all the players in the system

	Algorithmic im	Several open source solutions:	lient and server side
•	Specialized ha operations, ens	• FATE	celerate common

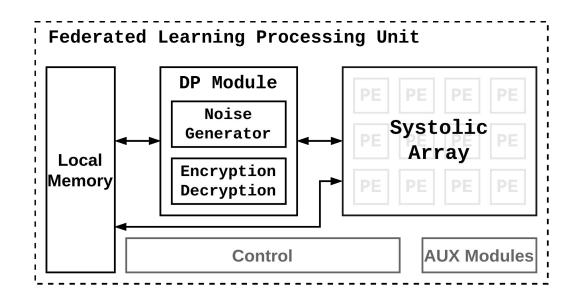
New Challenges

An efficient implementation of Differential Privacy-based Federated Learning system requires:

- **Robust framework** allowing the orchestration of all the players in the system
- Algorithmic improvement for Differential Privacy, both on client and server side
- **Specialized hardware** in heterogeneous architectures to accelerate common

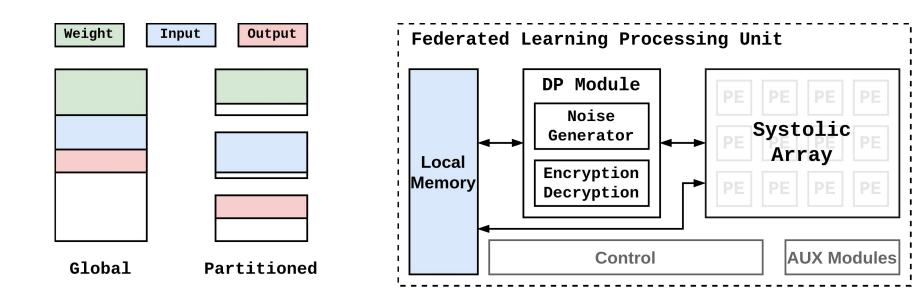
operations, ensuring energy efficiency

- Dedicated hardware module to speed up DP-based FL systems
- Its implementation requires analysis from several points of view



Possible design choices for local memory:

- Global buffer
- Partitioned local memories

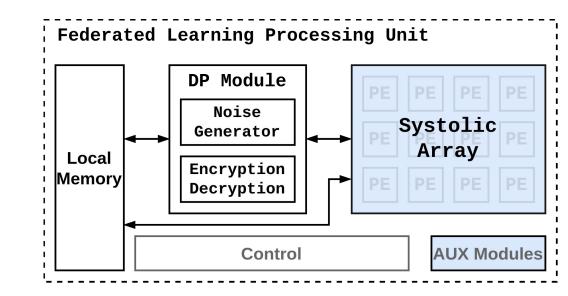


Possible design choices for systolic array:

- Output stationary dataflow
- Weight stationary dataflow
- Input stationary dataflow

Auxiliary modules:

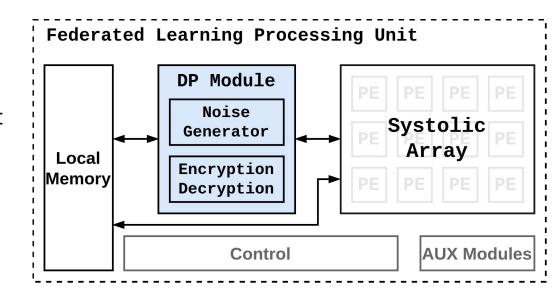
- Activation
- Quantization



Possible design choices for **Differential Privacy (DP) module**:

- Generation of noise within the chip (Noise Generator)
- Encryption/Decryption acceleration

- DP Module can be used in several ways:
 - Add noise to input/output data
 - Add noise to model weights



Conclusion

Conclusion

- Federated Learning is a promising approach for **distributed training** of machine learning models
- One of the most popular technique to ensure user data privacy is **differential privacy**
- One of the key challenges is to accelerate training
- Federated Learning Processing Unit (FLPU) can be implemented to speed up training process under differential privacy conditions
- FLPU is composed of **several modules**, each of which requires detailed analysis to be designed

Accelerating Differential Privacy-Based Federated Learning Systems

Mirco Mannino, Alessio Medaglini, Biagio Peccerillo, and Sandro Bartolini

Thank You! Any Questions or Suggestions?

Department of Information Engineering and Mathematics University of Siena, Italy

e-mail: mannino@diism.unisi.it

18th International Conference on Advanced Engineering Computing and Applications in Sciences (ADVCOMP) 2024 Special Session: Hardware Accelerators and Accelerated Programming (HAAP)

29th September, 2024