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Motivation and Background



Training Using Data Collected on-the-edge

CONVENTIONAL APPROACH

1. Collect data on edge devices (e.g., smartphone)
Send data to a central server

Train machine learning models in the server
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Share the trained model to edge devices

It can lead to several disadvantages:
e Performance degradation
e Lack of privacy




Federated Learning (1)

e Federated Learning (FL) was Introduced by Google in 2017

e Itis a distributed training approach
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Federated Learning (2)

ADVANTAGES
e User data privacy protection
e Improved model accuracy and diversity

e Bandwidth efficiency

DISADVANTAGES
e Implementation Complexity

e (Possible) Missing HW resources in edge devices



Federated Learning (3)

HOW TO ENSURE USER PRIVACY?
e Akey aspectin FL is ensuring the privacy of data collected locally

e Differential Privacy (DP) is one of the promising approaches to ensure

user data privacy

DIFFERENTIAL PRIVACY
e Add noise to either data or model guarantee privacy
e Popular approaches:
o Local Differential Privacy techniques
o Differential Privacy-based distributed Stochastic Gradient Descent
o Differential Privacy meta learning



Federated Learning (4)

HARDWARE RESOURCES

e Usually, edge devices are thought for inference, not training
e Acceleration can be achieved in different ways:

o Graphics Processing Unit (GPU)

o Field Programmable Gate Array (FPGA)

o Application Specific Integrated Circuit (ASIC)

e Devices need to be efficiently readapted to meet training needs



Federated Learning Processing Unit

(Possible ideas)



New Challenges

An efficient implementation of Differential Privacy-based Federated

Learning system requires:

e Robust framework allowing the orchestration of all the players in the system
e Algorithmic improvement for Differential Privacy, both on client and server side
e Specialized hardware in heterogeneous architectures to accelerate common

operations, ensuring energy efficiency
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Several open source solutions:
e FATE
e Federated Tensorflow
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Federated Learning Processing Unit

e Dedicated hardware module to speed up DP-based FL systems

e Its implementation requires analysis from several points of view

Federated Learning Processing Unit
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Federated Learning Processing Unit

Possible design choices for local memory:

e Global buffer
e Partitioned local memories
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Federated Learning Processing Unit

Possible design choices for systolic array:

e Output stationary dataflow
e Weight stationary dataflow
e Input stationary dataflow

Federated Learning Processing Unit
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Federated Learning Processing Unit

Possible design choices for Differential Privacy (DP) module:

e Generation of noise within the chip (Noise Generator)
e Encryption/Decryption acceleration

e DP Module can be used in Federated Learning Processing Unit

several ways: DP Module
. . : Noise = !

o Add noise to input/output : canoise Ssystolic :
data | Local Array !

. 'y Encryption :

o Add noise to model , [viemory Decryption I" :
weights : »

E Control AUX Modules E



Conclusion



Conclusion

e Federated Learning is a promising approach for distributed training of
machine learning models

e One of the most popular technique to ensure user data privacy is
differential privacy

e One of the key challenges is to accelerate training

e Federated Learning Processing Unit (FLPU) can be implemented to
speed up training process under differential privacy conditions

e FLPU is composed of several modules, each of which requires detailed

analysis to be designed
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Thank You!
Any Questions or Suggestions?
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