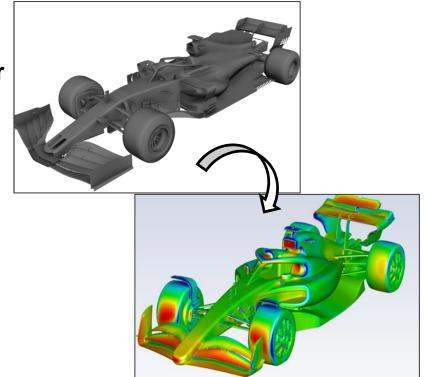


An Advanced Surrogate Model Approach for Enhancing Fluid Dynamics Simulations

Shubham Kavane, Kajol Kulkarni, Prof. Dr. -Ing. Harald Köstler

Chair for Computer Science - System simulation Friedrich-Alexander University, Erlangen-Nuremberg, Germany

The First International Conference on Al-based Systems and Services (AISyS) 2024 September 29 - October 3, 2024, Venice, Italy



Shubham Kavane, M.Sc (shubham.kavane@fau.de)

Motivation

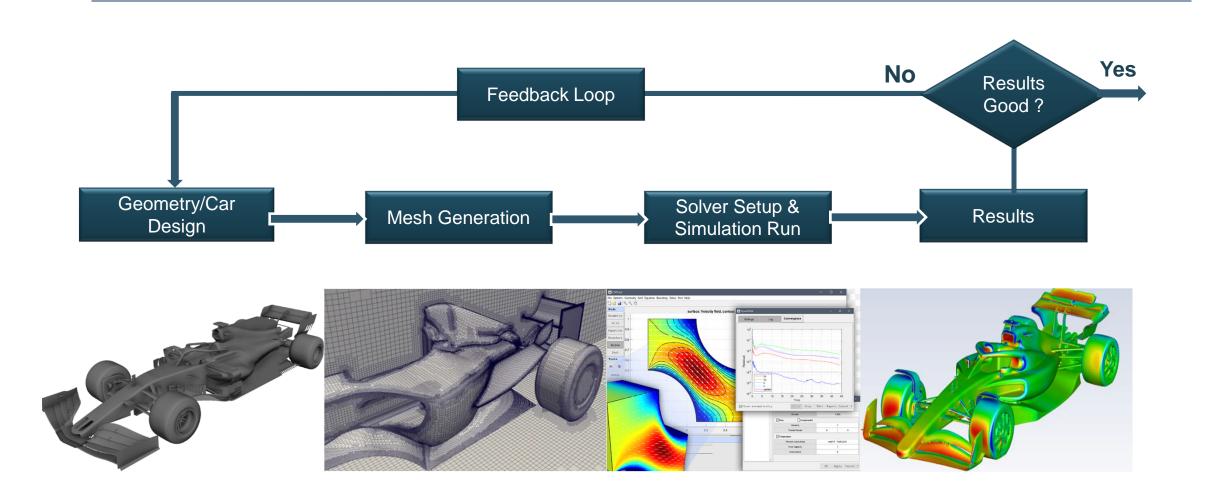
Motivation

Challenges with Traditional Fluid Dynamic Simulations

□ Objective: Design a car shape that minimizes drag and enhances fuel efficiency.

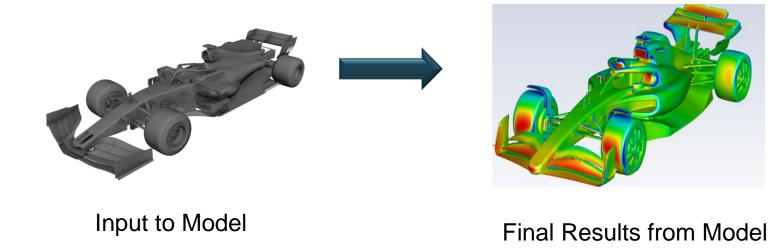
- > Currently, **Computational Fluid Dynamics (CFD)** methods are used for simulations
- > These methods provide high accuracy but are slow.
- > **Restricts** their use in **rapid design iterations** during the optimization process.

Traditional CFD method Pipeline

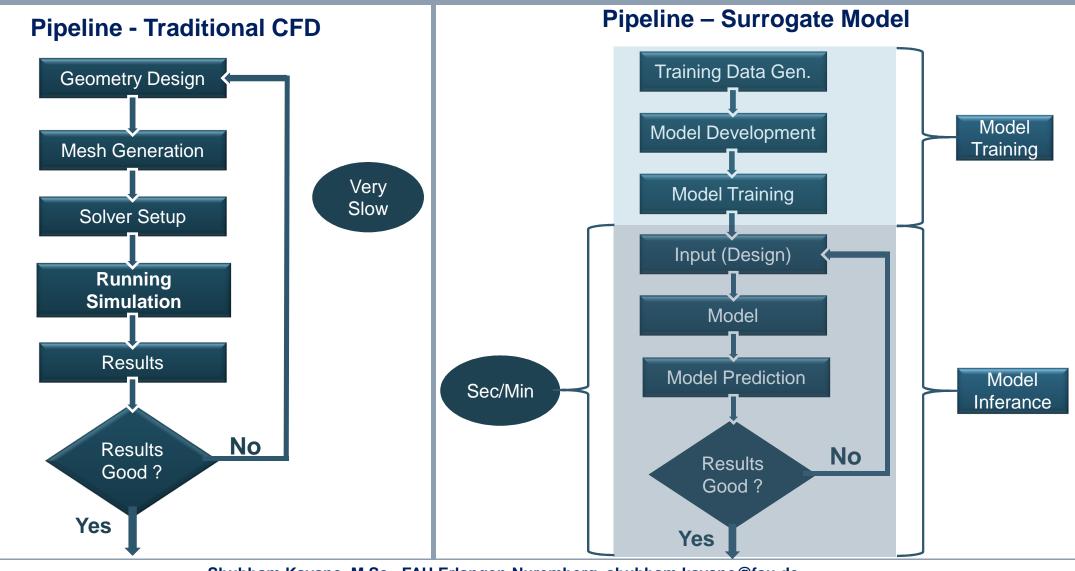


- Surrogate models offer faster predictions
- > They enable quick design iterations, accelerating the path to an optimized solution

Aim: To develop an efficient surrogate model for accurate prediction of fluid flows



Pipeline : Traditional CFD Vs Surrogate Model



Technische Fakultät

Shubham Kavane, M.Sc., FAU Erlangen-Nuremberg, shubham.kavane@fau.de

23.02.2025 6

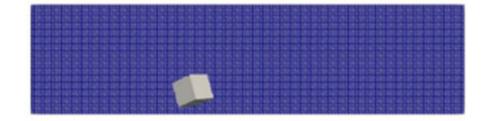
Development of Surrogate Model

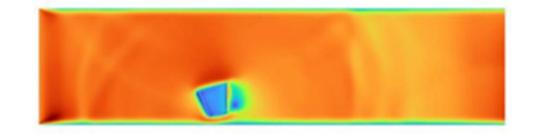
Training Data

□ Channel Flow is considered to generate the training data

□ 3-D Primitive geometries are randomly created to obstruct the fluid flow

The Lattice Boltzmann Method (LBM) -based framework, waLBerla, is utilized for simulations
The D3Q27 model with periodic boundary conditions is used to generate true labels





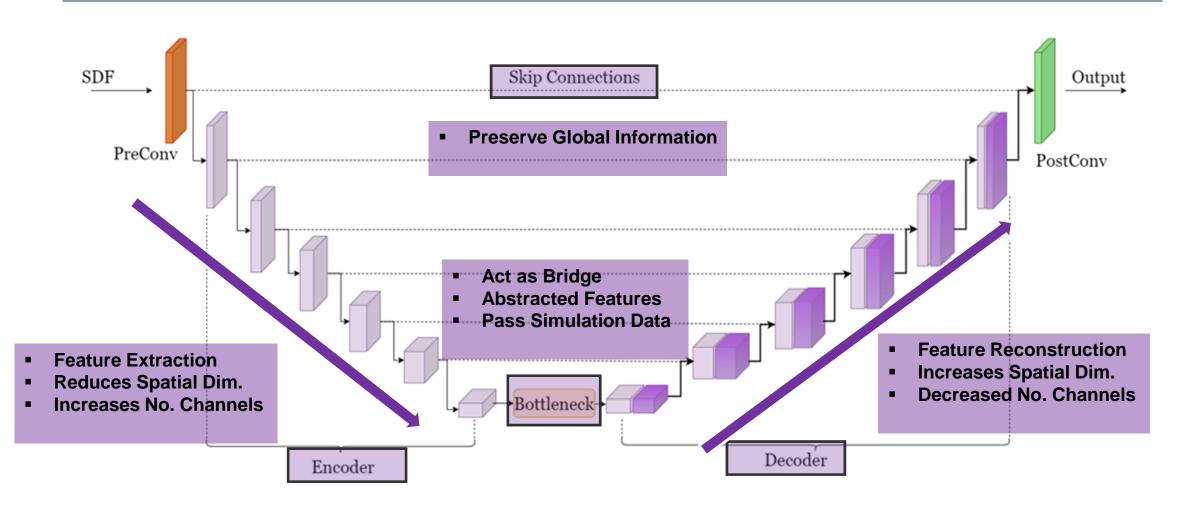
□ Signed Distance Fields (SDF) are used to represent the object's shape and surrounding fluid field

Deep Learning Model for Fluid Predictions

U-Net architecture is employed for **flow prediction**

- □ Initially, a standard U-Net model was developed
- **Results** from the standard U-Net indicated the **need for architectural improvements**
- Building on these insights, an advanced U-Net model was developed to enhance performance

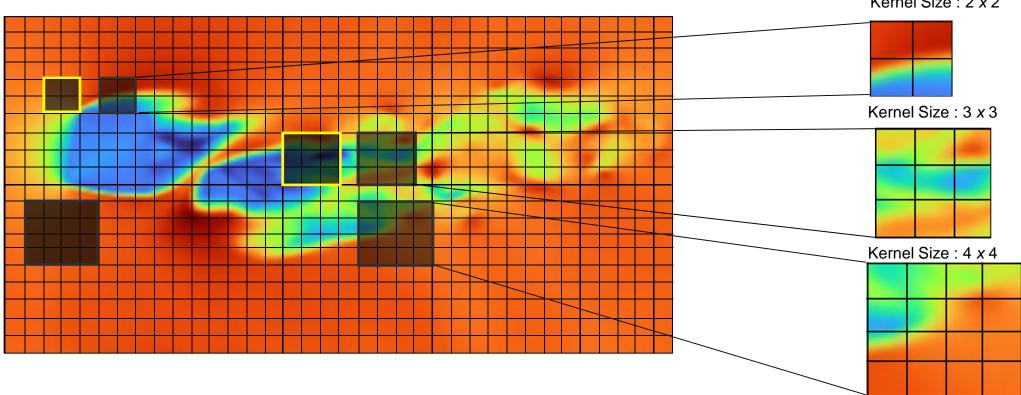
Understanding Standard U-Net Architecture



Standard U-Net Architecture

Advanced U-Net Architecture: Key Enhancement **Different Kernel Sizes**

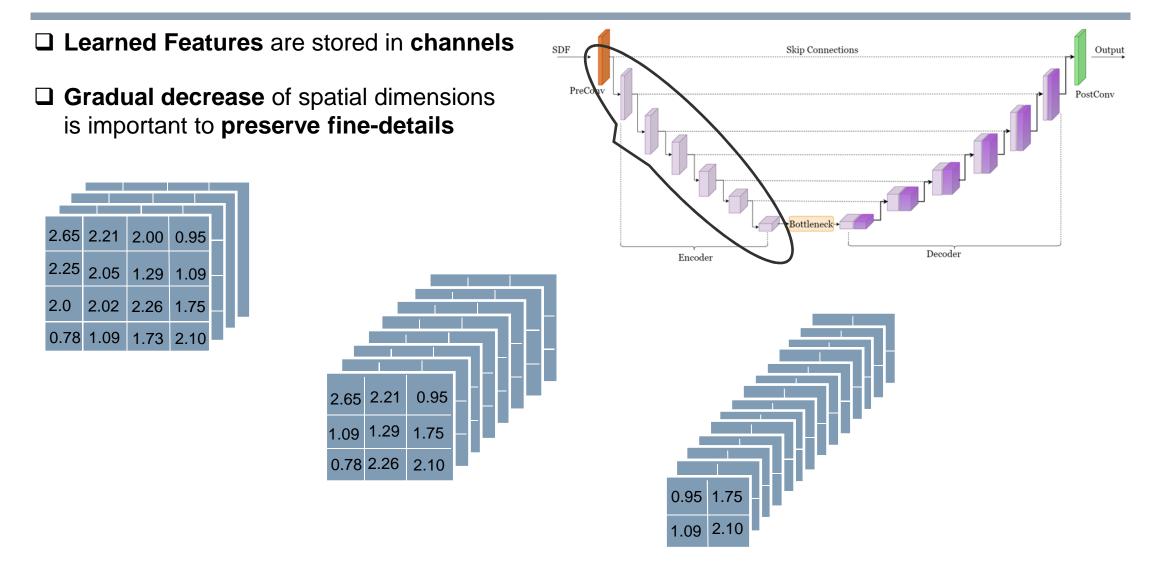
□ Allows the network to focus on **features at different scales**



Kernel Size : 2 x 2

Advanced U- Net Architecture: Key Enhancement

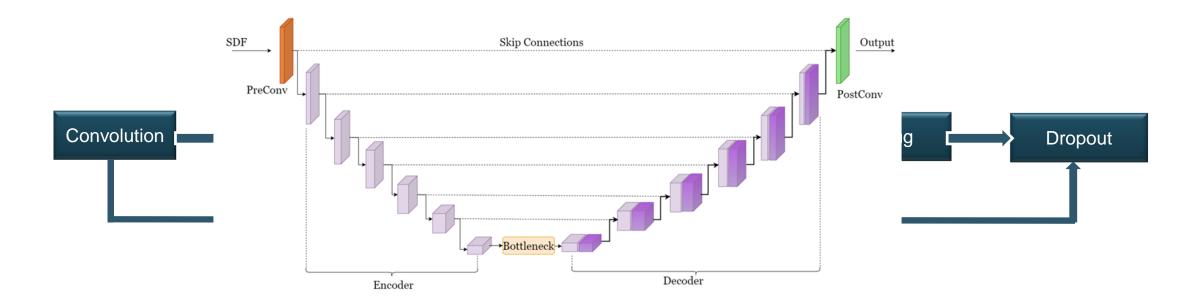
Increased encoder layers and number of channels (up to 4096).



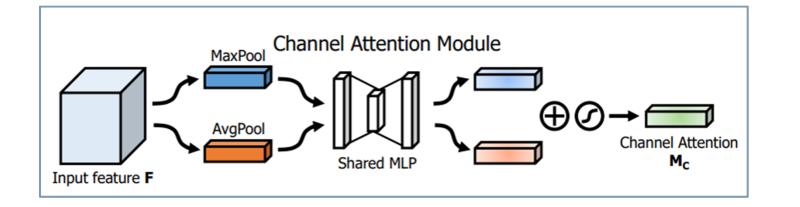
Advanced U- Net Architecture: Key Enhancement

Skip Connections Inside Encoder and Decoder Block.

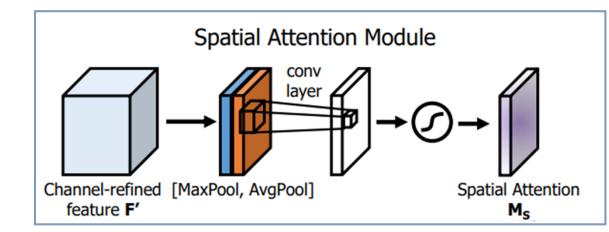
Operations with Potential Information Loss



Advanced U- Net Architecture: Key Enhancement Convolution Block Attention Module (CBAM)



Focus : Which Which Features Imp. ?



Comparing Standard U-Net and Advanced U-Net

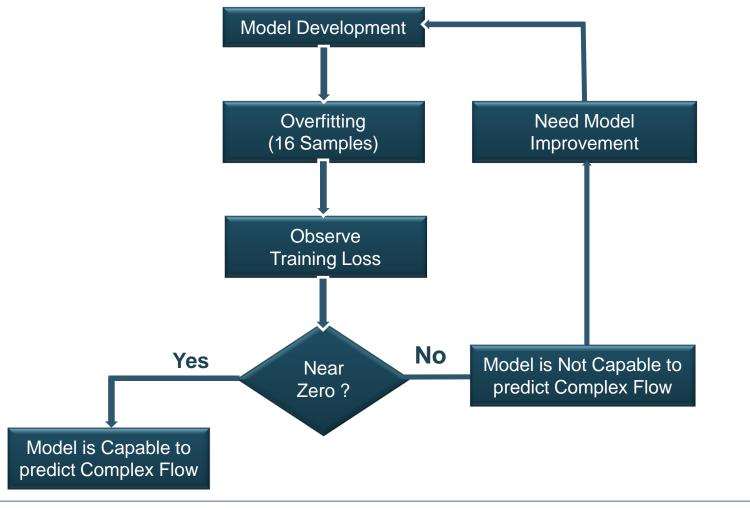
Feature	Standard Model	Advanced Model
Number of Encoder Layers	6	11
Number of Decoder Layers	6	11
Total Number of Channels	512	4096
Attention Mechanism	X	Convolution Block Attention Module (CBAM)
Increased No. of Encoder Layers	X	\checkmark
Use of Skip Connection in Encoder and Decoder Block	X	\checkmark

Comparison between Base model and Advanced U-net Model

Training Methodology

Model Training Methodology

Model Capacity Evaluation through Overfitting



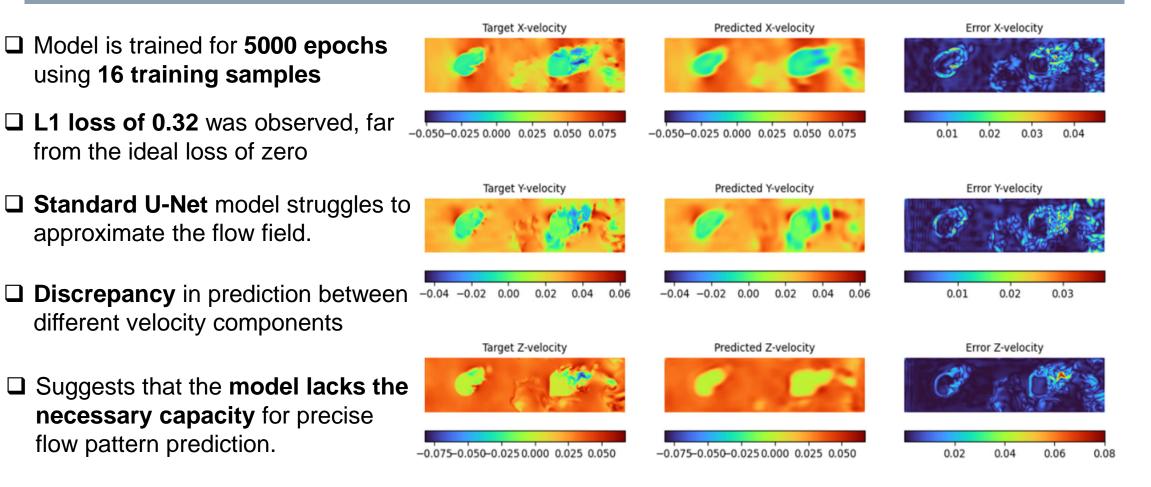
Model Training Methodology Multi-GPU Training

- > Trainable parameters increased from **46 million** in standard U-Net to **511 million** in Advanced U-Net
- > Unable to fit the Advanced U-Net model into **single GPU memory**
- > Multi-GPU setup is utilized for training
- > Data parallelism was implemented using PyTorch DDP
- Model parallelism was implemented using Deep Speed ZeRO-3
- > Training was conducted on total 8, A100 GPUs.

Initial Results

Results and Analysis : Standard U-Net Model

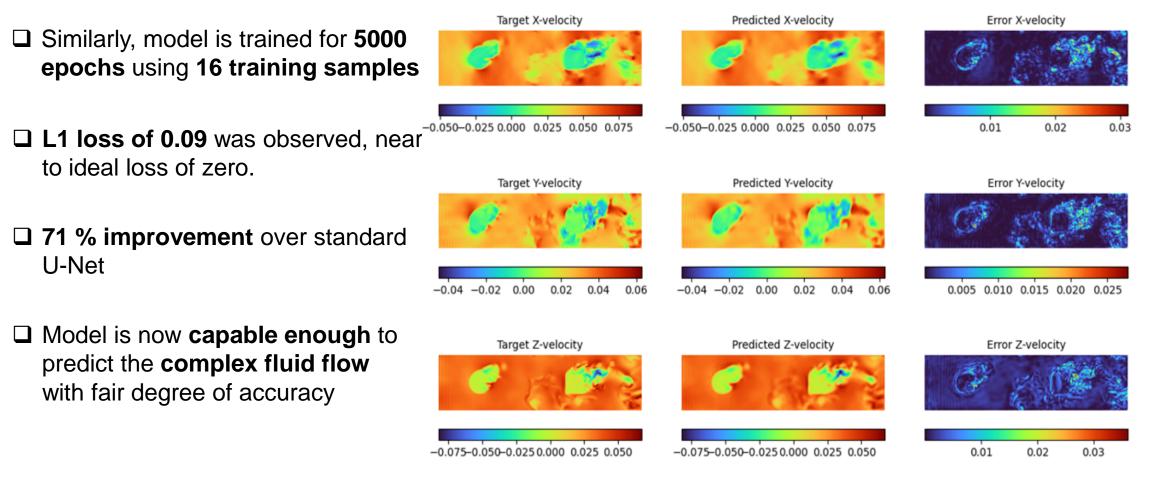
Model Capacity Evaluation through Overfitting



Comparison of Target Velocity, Predicted Velocity, and Absolute Error for Each Component for 16 data size

Results and Analysis : Advanced U-Net Model

Model Capacity Evaluation through Overfitting



Comparison of Target Velocity, Predicted Velocity, and Absolute Error for Each Component for 16 data size

Results and Analysis

Comparing Relative L1 Norm Error

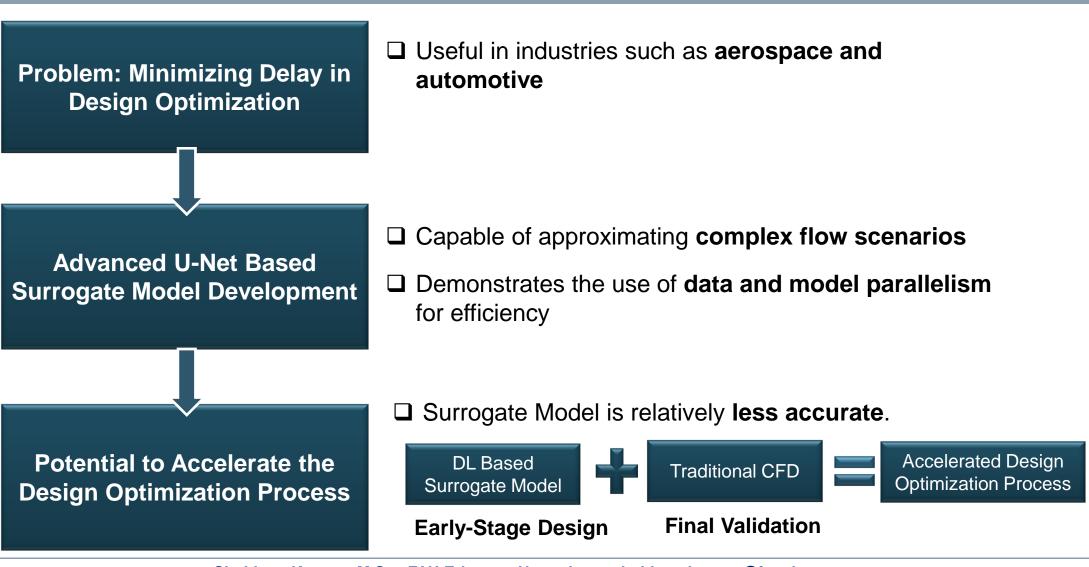
 $\square \text{ Relative L1 norm error:} \qquad ||E||_1 = \frac{||V_{predicted} - V_{true}||_1}{||V_{true}||_1} \qquad V_{predicted} = Model Prediction \\ V_{true} = Ground Truth$

Velocity Component	Relative L1 Norm Error for Std. U-net Model	Relative L1 Norm Error for Advanced U-net Model	Improvement in advanced model over base model
Х	0.02789	0.008367	70 %
Y	0.04285	0.010855	75.13 %
Z	0.06850	0.02185	68.10 %

Relative L1 Norm Error for Base and advanced model

Summary

Conclusion



Future Steps

Model Training on Large Dataset

- Training on 10,000 samples to evaluate the advanced U-Net model's generalization capabilities
- □ An ablation study will assess the impact of architectural elements

Comparing Surrogate
Model with Traditional
CFD

- Compare the accuracy of the surrogate model against traditional methods
- Analyze convergence time, highlighting the total time saved by using the surrogate model

Assess **computational resource usage**, including energy consumption

Thank you for your attention

Shubham Kavane, M.Sc (shubham.kavane@fau.de)

Chair for Computer Science - System simulation Friedrich-Alexander University, Erlangen-Nuremberg, Germany

[1] Nils Thuerey et al. "Deep Learning Methods for Reynolds-Averaged Navier-Stokes Simulations of Airfoil Flows". In: AIAA Journal 58.1 (Jan. 2020). arXiv:1810.08217 [physics, stat], pp. 25–36. issn: 0001-1452, 1533-385X. Doi: 10.2514/1.j058291. URL: <u>http://arxiv.org/abs/1810.08217</u>

[2] Sam Jacob Jacob et al. "Deep learning for real-time aerodynamic evaluations of arbitrary vehicle shapes". In: arXiv preprint arXiv:2108.05798 (2021).

[3] Sam Jacob Jacob et al. "Deep learning for real-time aerodynamic evaluations of arbitrary vehicle shapes". In: arXiv preprint arXiv:2108.05798 (2021).

[4] Xiaqing Li et al. "Performance Analysis of GPU-Based Convolutional Neural Networks". In: 2016 45th International Conference on Parallel Processing (ICPP) (2016), pp. 67–76. url: <u>https://api.semanticscholar.org/CorpusID:206840327</u>.

[5] Kajol Kulkarni. Creating and Benchmarking Fluid Dynamics Dataset for Training Surrogate Model. url: <u>https://www10.cs.fau.de/publications/theses/2023/Master_KulkarniKajol.pdf.</u>

[6] DDPP PyTorch. Getting Started with Distributed Data Parallel. Accessed: 2023-11-05. 2023. url: https://pytorch.org/tutorials/intermediate/ddp_tutorial.html

[7] DeepSpeed. Getting Started with DeepSpeed. Accessed: 2023-12-18. 2023. url: https:// deepspeed.readthedocs.io/en/latest/.

[8] All Images of CDF car simulations : <u>www.wikipedia.org</u>

Technische Fakultät

Additional Slides

Residual Connections Inside Encoder and Decoder Block

Why it is beneficial to skip connection inside encoder and decoder block

- Encoder and Decoder Blocks typically include Convolution, Activation, Batch Normalization, Attention Mechanism, Dropout, and Deconvolution operations.
- Reducing spatial dimensions with strides > 1 in convolution can lead to loss of spatial information, as details from the down sampled regions are not preserved.
- The choice of kernel size and padding influences information capture. Large kernels capture more context but may lose finer details if padding is inadequate
- Activation functions like ReLU or LeakyReLU introduce non-linearity, which is crucial for learning complex patterns. However, they may also lead to information loss by suppressing or zeroing out certain features.
- Batch normalization smooths activations for better training stability but excessive normalization can blur important feature distinctions, potentially leading to a loss of detailed information.
- Attention mechanisms (channel and spatial) highlight important features but may downplay less emphasized ones, potentially resulting in the loss of some information if not carefully managed.

Proposed Future Steps

Training on a Larger Dataset

- → Training datasets will be scaled up to 10,000 samples to evaluate the advanced U-Net model's generalization
- An ablation study will be conducted to assess the impact of different architectural elements, such as encoder layers, attention mechanisms, and channel size, on the model's performance.

• Performance Comparison and Hybrid Model Development

- → We plan to compare the advanced U-Net with the Fourier Neural Operator (FNO) to evaluate differences in accuracy, computational efficiency, and scalability, focusing on capturing fine flow structures, training time, and performance on large-scale problems.
- → Based on this comparison, we aim to develop a hybrid model that combines U-Net's fine-scale feature extraction with FNO's global flow dynamics modeling, improving both accuracy and efficiency in fluid dynamics predictions.

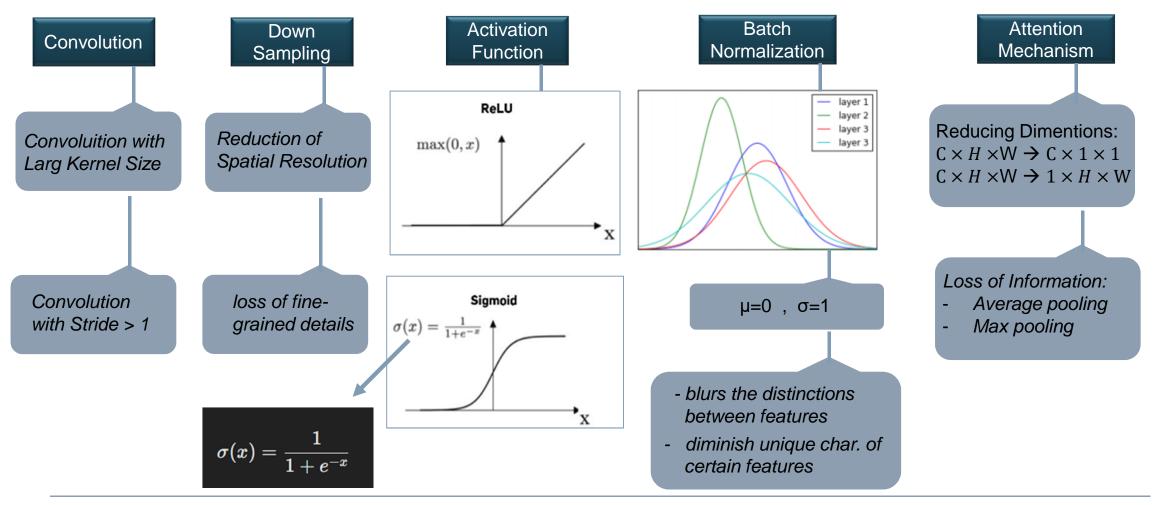
• Evaluation of Surrogate Models

- → We will compare the accuracy of the surrogate model (advanced U-Net or hybrid) with traditional CFD methods, focusing on average and maximum errors in critical flow regions.
- → Convergence time will be assessed, with surrogate models expected to significantly outperform CFD simulations, especially in complex, iterative domains.
- → Computational resource usage, including CPU/GPU power, memory consumption, and energy expenditure, will be analyzed to quantify potential cost savings from using surrogate models over traditional CFD.

Skip Connections Inside Encoder and Decoder Block.

Why Use Skip Connections in Encoder-Decoder Blocks?

Operations with Potential Information Loss

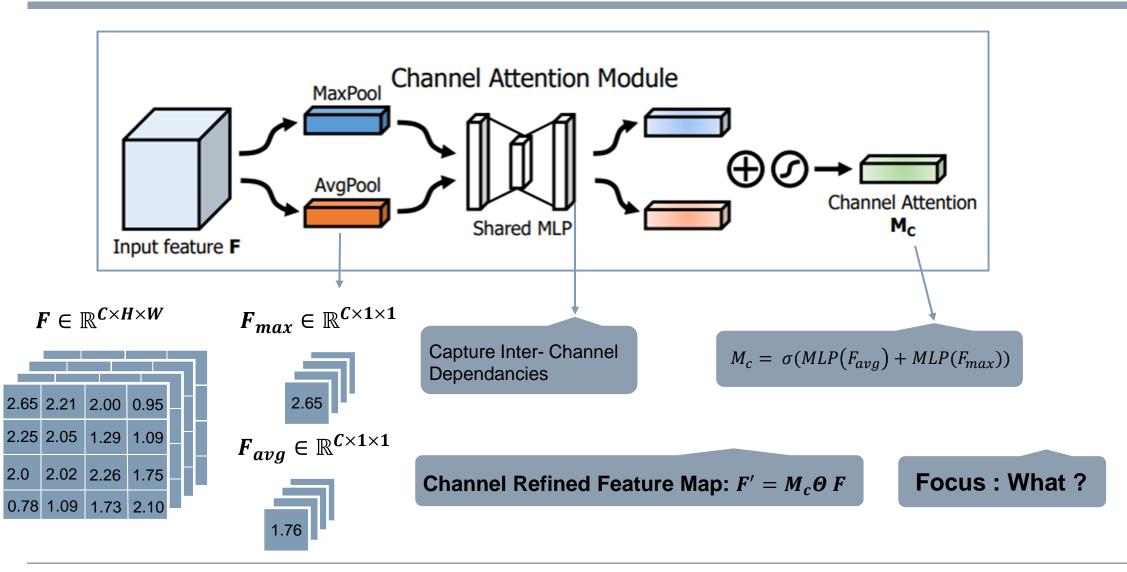


Building upon the standard U-net architecture, we have incorporated additional features in the architecture.

□ Key Enhancements Over Standard U-Net:

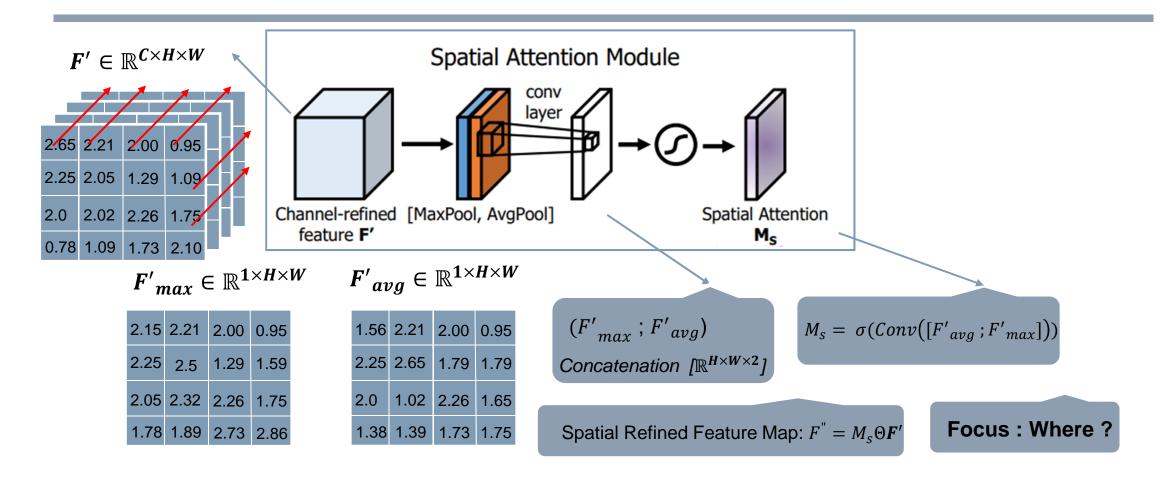
- > Encoder layers with varying kernel sizes, maintaining spatial dimensions and channel count
- Increased encoder layers and number of channels (up to 4096).
- Skip connections within the encoder and decoder block.
- Convolution Block Attention Module (CBAM) for improved feature extraction.

Convolution Block Attention Module (CBAM) for improved feature extraction.



Technische Fakultät

Convolution Block Attention Module (CBAM) for improved feature extraction.



Final Output(F["]) = Spatial_Attention(Channel_Attention(F))

Challenges and Proposed Future Steps

Training on a Larger Dataset

- Training datasets will be scaled up to 10,000 samples to evaluate the advanced U-Net model's generalization
- > An ablation study will assess the impact of various architectural elements

Hybrid Model Development

- Compare the advanced U-Net with the Fourier Neural Operator (FNO) to assess differences in accuracy, computational efficiency, and scalability.
- Aim to develop a hybrid model that combines U-Net's feature extraction with FNO's global flow dynamics modeling to improve accuracy and efficiency.

Comparing Surrogate Model with Traditional CFD

- compare the accuracy of the surrogate model (advanced U-Net or hybrid) with traditional CFD methods
- Analyze computational resource usage, including CPU/GPU power and memory consumption, to quantify cost savings from using surrogate models over traditional CFD