

UNIVERSIDAD POLITÉCNICA DE MADRID ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA AGRONÓMICA, ALIMENTARIA Y DE BIOSISTEMA

Beehive Monitoring Based on IoT Technologies and Al

Benahmed Khelifa, Merbouh Abdeldjalil, Tab Mohamed Abdeessamd, Lorena Parra, Jaime Lloret, Bourouis Amina

AGENDA

INTRODUCTION

Problem

Related Work

Objective

PROPOSED SYSTEM

Architecture

Components

Modules

0.3

RESULTS

Collected data

Decision tree model

Visualization

04.

CONCLUSIONS AND FUTURE

INTRODUCTION

Problem

Apiculture

Climate change

Chemicals in the agriculture

Pollution

Water scarcity

Parasites

Need monitoring technologies to assess the status of the beehive

INTRODUCTION

Related Work

Existing monitoring systems:

Temperature, humidity, weight, CO², video and audio

Self-Powered Smart Beehive Monitoring based on IoT

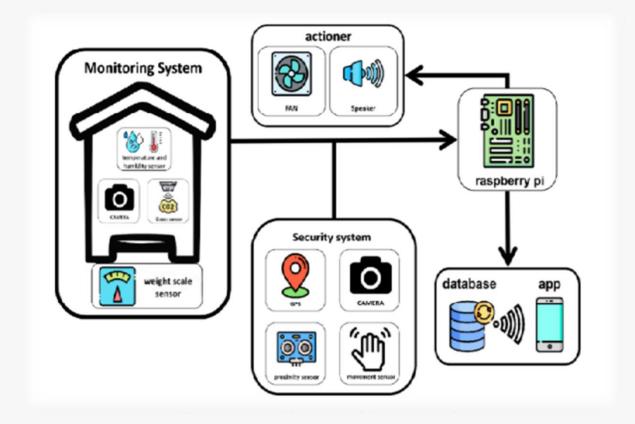
Data stoder in servers

Some proposals used video and Edge AI to recognize varroa

INTRODUCTION

Objective

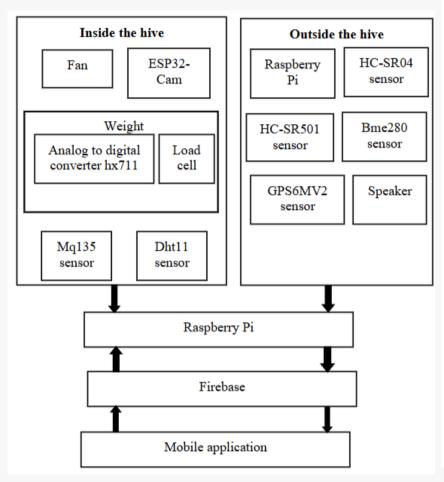
Monitor the conditions in the beehive as part of a system for its protection based on Al including WiFi connection with cameras and speakers...



Architecture

Components

- Raspberry PiRaspberry
- BME280 (pressures)
- DHT11 (temp. and humidity)
- MQ135 (CO²)
- HC-SR04 (ultrasound sensor proximity)
- Raspberry Pi Camera V2

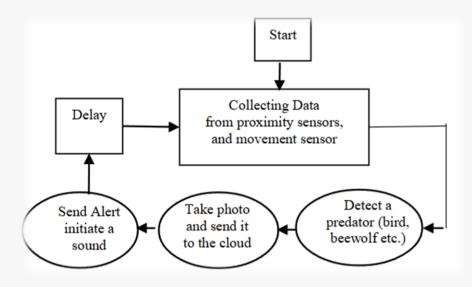


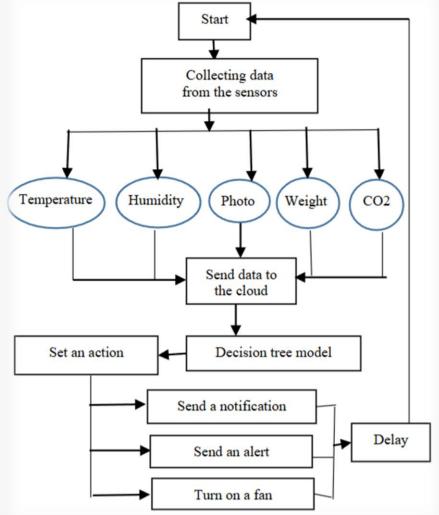
Components

(a) Beehive External and Internal components.

(b) Weight sensor.

c) Security sensors.





Modules

RESULTS

Collected data

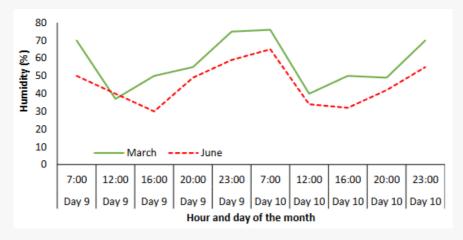
Date/Time	Interior temp. (°C)	Exterior temp. (°C)	Rain falls	CO2 (ppm)	Humidity (%)	Wight (Kg)	Pressure (Pa)
08/03/2023 22:38	24.5	27.2	false	490.06	70	15	930.6
26/04/2023 16:53	25.0	28.0	false	498.21	80	18	925.6
27/04/2023 00:55	30.2	31.0	false	506.35	60	12	927.1
29/05/2023 17:07	37.0	38.1	true	538.94	34	11.5	930.1
10/06/2023 15:10	33.0	40.4	false	506.35	32	11.4	933.7

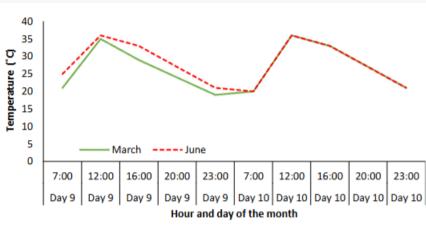
RESULTS

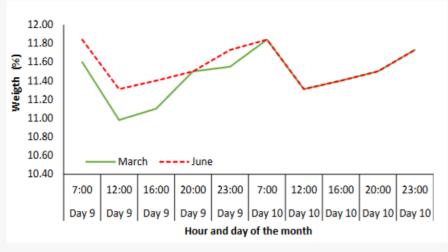
Desition tree model

Metrics
F1 Score
Recall
Accuracy
Accuracy

Example	Attributes						Result			
	Humidity	Exterior	Interior	Weight	Co2	Rainfall	Send	Send	Requires	Class
	%RH	Temp.	Temp.	Kg	ppm	in last 24h	Notification	Alert	hive visit	
1	70 -95	9- 47	10-36	1- 35	440-500	N	N	N	N	Normal
2	70 -95	<8	10-36	1- 35	440-500	N	Y	N	N	Hibemation
3	>96	9- 47	10- 36	1- 35	440-500	N	Y	N	N	Evaporating Nectar
4	0 -70	9- 35	10- 36	1- 35	440-500	N	Y	N	N	Low humidity hive
5	60-85	9- 35	10- 36	1- 35	440-500	N	N	Y	Y	Colony no longer in hiv
6	70 -95	9- 35	10-36	1-35	400-440	N	N	Y	Y	Diminished population - Reduced C02 production
7	70 -95	9- 47	>38	1-35	440-500	N	N	Y	Y	Hive is too hot
8	>96	2- 47	10- 36	1-35	440-500	Y	N	Y	Y	Hive is too damp
9	0- 100	9- 47	10- 36	>'5	440-500	N	Y	N	N	Hive is too heavy







RESULTS

Visualization

CONCLUSIONS

Growing importance of IoT and AI technologies in monitoring beehives in the Sahara region in southwestern Algeria.

Innovative solutions to monitor the health status of the hive and protect the bees from predators such as bee-eating birds, diseases like varroa, and theft.

Our future work will provide more details on the results of experiments related to hive security, namely the detection of predators and diseases affecting bee colonies, besides the study of other parameters like bee sounds, and bee behavior based on Artificial Intelligence and Internet of Things technologies..

THANK YOU FOR YOUR ATTENTION

Iorena.parra@upm.es

UNIVERSIDAD POLITÉCNICA DE MADRID ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA AGRONÓMICA, ALIMENTARIA Y DE BIOSISTEMAS

UNIVERSIDAD POLITÉCNICA DE MADRID

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA AGRONÓMICA, ALIMENTARIA Y DE BIOSISTEMAS

