Introduction	

Simulation

Results

Conclusio

Towards a Low Cost, Microcontroller-Based Class-D Audio Amplifier

Erik Genthe <u>Timm Bostelmann</u> Sergei Sawitzki

FH Wedel University of Applied Sciences Contact: bos@fh-wedel.de

Introduction

Simulation

Results

Conclusio

Presenter's Resume

Timm Bostelmann received his engineer's degree in computer engineering from the FH Wedel (University of Applied Sciences) in 2008. Since then, he is employed at FH Wedel as a research assistant in the field of embedded systems.

Introduction	Simulation	Results	
●000	00	00000	
Motivation			

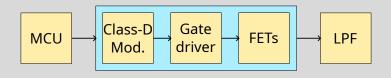
DIY Backpack Speaker

Amplifier Requirements

- High efficiency (low power consumption)
- Good audio quality
- Low cost
- Wireless connectivity
- Ideally DIY

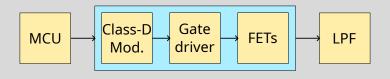
00	00000	
xisting Solution		
	00	00 00000

TAS5630B based WONDOM AA-AB32192

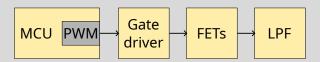

- Power supply voltage 25 V to 48 V
- ► Idle Power: 4.8 W
- Efficiency at high power: 91% to 96%
- Switching frequency: 400 kHz
- ► THD+N = 1 % @ 246 W, 4 Ω

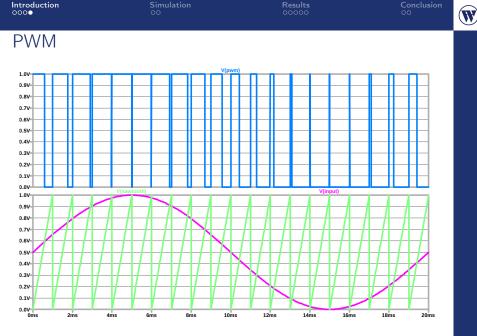
Problems

- 4.8 W dominates for "idle listening"
- Internal switching transistors (no replacing, no tinkering)
- Extra cost for class-D IC
- Not DIY


Introduction	Simulation	Results	Conclusion	
00●0	00	00000	00	
Approach				

${\sf Classic-custom\ class-D\ IC}$




Introduction	Simulation	Results	Conclusion	
00●0	00	00000	00	
Approach				

Classic – custom class-D IC

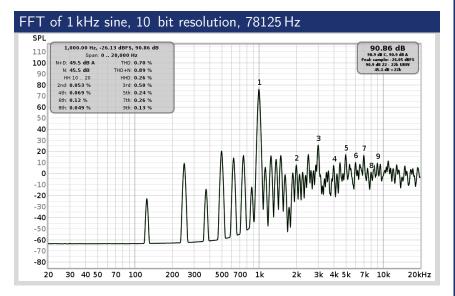
Simple - direct PWM generation

Introduction	Simulation	Results	Conclusion
0000	●○	00000	00

Microcontroller Selection

С	omparison			
	MCU	Clock	PWM clock	Power consumption
	ESP32	240 MHz	80 Mhz	0.1 W
	TEENSY 4.1	600 MHz	150 Mhz	0.5 W
	STM32H723	550 MHz	275 Mhz	0.266 W
	STM32H7A3	280 MHz	280 Mhz	0.17 W
	STM32WB55	64 MHz	64 Mhz	0.175 W

PWM frequency


$$f_{\rm pwm} = rac{f_{\rm clk}}{r_{
m pwm}} = rac{80\,{
m MHz}}{1024} = 78125\,{
m Hz} \approx 78\,{
m kHz}$$

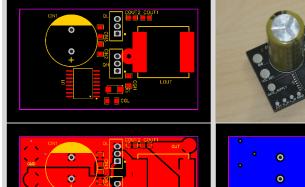
Introd	

Conclusio

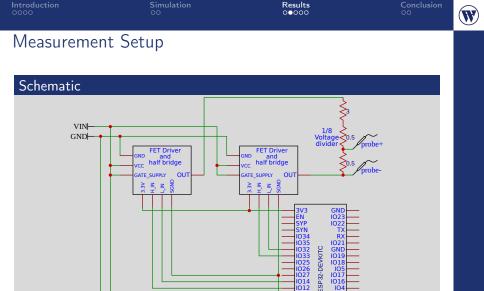
Room Equalization Wizard (REW) Simulation

Introduction	

Simulation


Results

Conclusio


Power Switching Circuit

Layout

uC-Driven CLASS-D Amp By Erik Genthe

5V Buck VOUT Converter GND

VIN

GND

100

1015

SD2

SD3

CMD

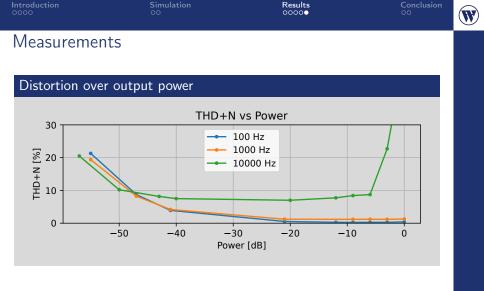
5V

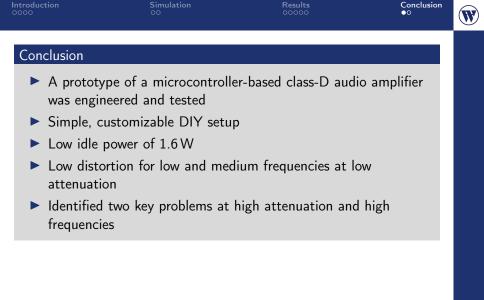
Introduction 0000	Simulation 00	Results oo●oo	Conclusion	(

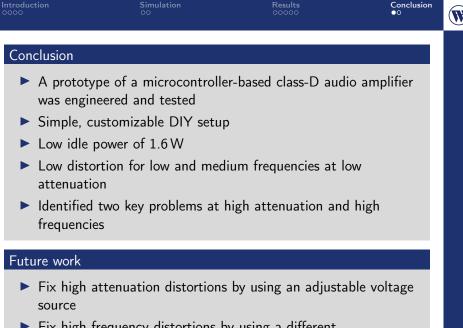
Idle Power Consumption

Measurement




Measurement results


$$P_{\rm idle} = U \cdot I_{\rm idle} = 10 \,\mathrm{V} \cdot 158.5 \,\mathrm{mA} = 1.585 \,\mathrm{W} \approx 1.6 \,\mathrm{W}$$



Output power over frequency

 Fix high frequency distortions by using a different microcontroller (e.g., STM32WB55)

Introduction	

Simulation

Results

Conclusion ○●

Thank you for your attention.