Securing Digital Identities with Blockchain and Smart Contracts

Lucía Muñoz, Álvaro Fernández, Daniel Paredes

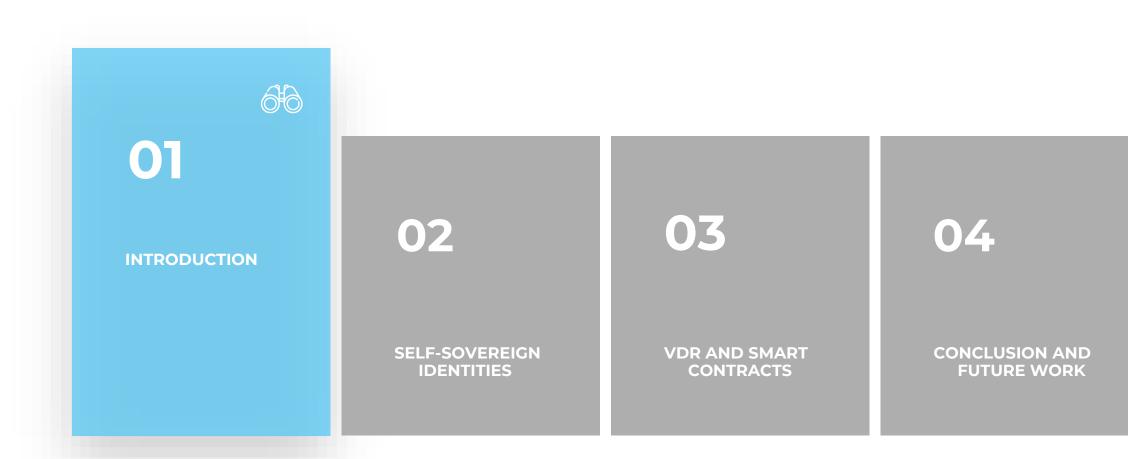
Lucía Muñoz Solanas, VICOTMECH

SHORT BIO

LUCÍA MUÑOZ SOLANAS

Education

- Mathematics Degree from the University of Zaragoza.
- Master's Degree in **Artificial Intelligence** from the Valencian International University.


Current role

 Working at VICOMTECH (since 2022) in the Digital Security department.

Specializations

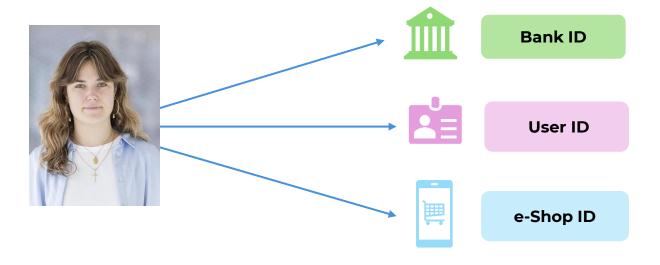
- Cryptography and encryption techniques.
- Identity management.
- Blockchain technologies (Ethereum, Hyperledger-Fabric).

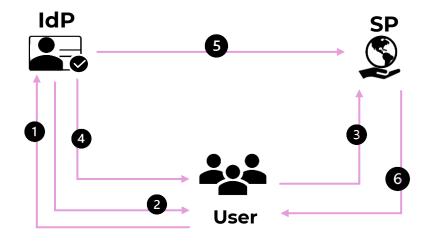
INTRODUCTION

DIVINE

- European Project of the agri-food sector.
- Based on the creation of a Data Space ecosystem.
- It provides participants with access to a variety of resources.
- Owners provide specialized agricultural applications.

OBJECTIVE

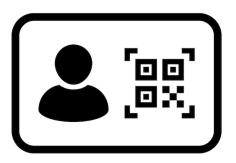

• Develop an advanced Self-Sovereing Identity (SSI)-based Identity Management System (IdM), focused on authentication and authorization, for this Data Space that alings with European regulations (eIDAS2, GDPR).



• Online representation of individuals, used for identification and authentication purposes.

In an IdM there are **two key components**:

- **Identity Provider (IdP):** Authenticates users and provides identity information to other systems.
- **Service Provider (SP):** Provides services to users, relying on identity information from IdPs.



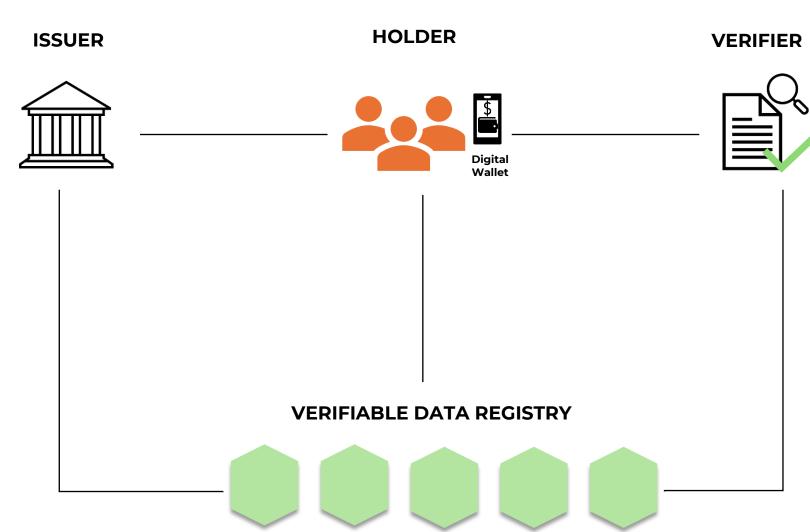
- Digital IdM that gives user **full control** over their **credentials** without relying on centralized authorities.
- **No need to directly verify credentials** with trusted third parties thanks to verifiable data registries (VDR).
- Uses cryptographic techniques to ensure data integrity and authenticity.
- **Secure and transparent recording** of all transactions through database replication and computational trust.
- Digital wallets securely store private keys, authenticators, and digital credentials securely and reliably.

ENTITIES IN THE SSI ECOSYSTEM

HOLDER

 Responsible for storing and presenting the credentials.

ISSUER

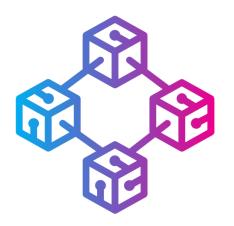

 Trusted entity or individual authorized to issue and sign the credentials.

VERIFIER

 Entity or individual who validates the credentials that are presented by the holder.

VERIFIABLE DATA REGISTRY (VDR)

 System or database where the public keys and necessary data are stored to verify credentials, without relying on Issuer (Blockchain).

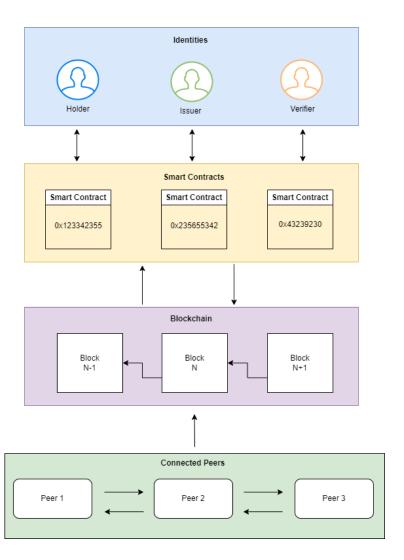


8 03 01 02 04 **VDR AND SMART** CONTRACTS INTRODUCTION **SELF-SOVEREIGN CONCLUSION AND IDENTITIES FUTURE WORK**

ETHEREUM VDR

- The **VDR** is a **blockchain-based registry** that is immutable and transparent.
- Stores credential data, enabling **Verifiers** to authenticate information without direct contact with the **Issuer**.
- Registered data is unmodifiable, ensuring credential integrity.
- Operates on a private Ethereum blockchain with three nodes.
- Uses Proof-of-Work (PoW) as its consensus mechanism.

SMART CONTRACTS



- Self-executing programs operating on the Ethereum blockchain, following predefined rules.
- Custom Smart Contracts in Solidity developed for each participant in the SSI ecosystem.
- Automates the issuance and verification of credentials.
- Based on the Ethereum standards ERC-735 (Credential Management) and ERC-725 (Key and Permission Management).

VICONTECH MEMBER OF BASQUE RESEARCH & TECHNOLOGY ALLIANCE

SMART CONTRACTS


```
POST /addTopicToIssuer

POST /checkClaimByPurpose

POST /checkClaimPurposes

POST /checkPurposesByIssuer

POST /removeTopicFromIssuer

POST /unlock_account
```

```
struct Claim {
    uint256 topic;
    uint256 scheme;
    address issuer;
    bytes signature; // this.address + topic + data
    bytes data;
    string uri;
    address[] verifiers;
    string status;
}
```

USE CASE

- 1. Bob and Alice creates an account in the IdP→ **HOLDER** identity
- 2. Bob registers an application the IdP \rightarrow **ISSUER** identity
- 3. Alice request access with a role in the application → ADD CLAIM
- 4. Bob receives the requests and sings the claim → SIGN CLAIM
- 5. Alice tries to access to the application → **GET CLAIM**
- 6. The IdP service (VERIFIER) checks the user credentials (user + password) and the claim → VERIFY CLAIM

04 01 02 03 **CONCLUSION AND FUTURE WORK VDR AND SMART** INTRODUCTION **SELF-SOVEREIGN IDENTITIES** CONTRACTS

CONCLUSIONS

- A SSI-based identity management system has been implemented and now is functional.
- For this SSI-based system we have a digital wallet for users to manage their credentials, both in web and mobile application format.

FUTURE WORK

- Migrate the blockchain format to align it with the European Blockchain Services Infrastructure (EBSI):
 - Change credential format.
 - Smart Contracts are replaced by DIDs.
 - Credentials are not stored in the blockchain. They are stored by the holder in the digital wallet.
- Transitioning from Proof-of-Work to Proof-of-Stake.

