

Towards Automated Checking of GDPR Compliance

Pauline Di Salvo Cilia, Alba Martinez Anton, Clara Bertolissi

Presented by:

Alba Martinez Anton

Aix-Marseille University, CNRS

alba.martinez-anton@lis-lab.fr

Alba Martinez Anton, Phd Student at Aix-Marseille University

Academic background:

- Computer Science PHd student at Aix-Marseille University (since november 2021)
 - Subject: Privacy Protection through the Formalization of Provenance-Based Models.
 - ▶ Thesis defense in Decembre 2024
- Masters Computer Science Fiability and Security from Aix-Marseille University (2019-2021)
- International Licence Mathematics and Computer Science from University of Bordeaux (2016 -2019)

Definition and context of GDPR compliance

Extending the Open Provenance Model

Tool for compliance verification: Architecture and Implementation

Privacy exposition and GDPR

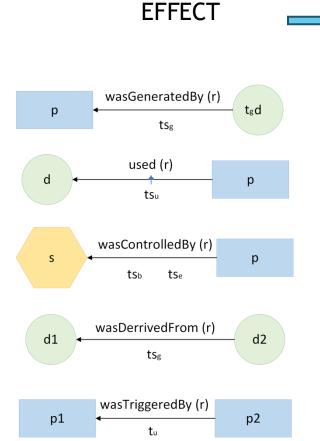
Increase in the quantity of personal data stored and processed by computer systems in recent years

Abuse of the use of this data: Cambridge Analytica, Facebook-CIA scandal, and the Equifax data breach.

Emergence of laws regulating the use of personal data, such as the GDPR in the European Union.

GDPR Principles

- Consent compliance [GDPR art.6]: personal data is used only for purposes the user has given consent to.
- ▶ Data access [GDPR art.15(1)]: a report is sent in time after a user request.
- ▶ Data erasure [GDPR art.17]: personal data is erased *in time* after a user request.
- Storage limitation [GDPR art.5(1)]: personal data must not be stored for too long after its last use.



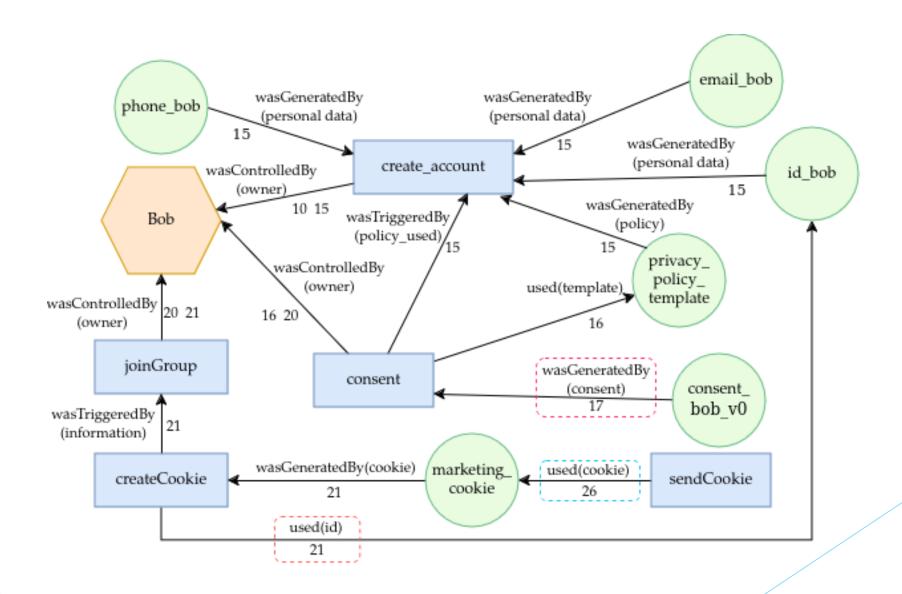
Automation the compliance verification of the system events?

The Open provenance Model

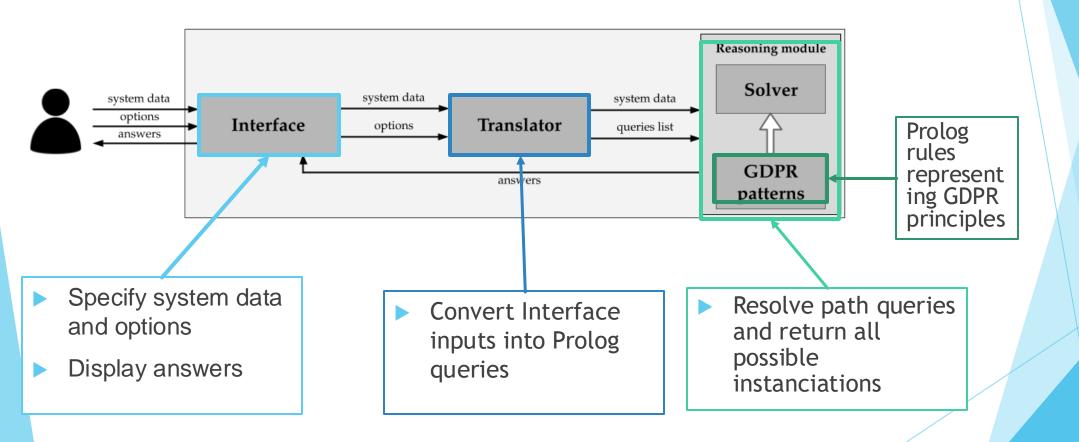
Representation of the data provenance, through a graph

CAUSE

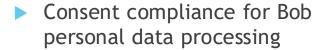
Two particular artefacts:



- Extension with attributes:
 - o Purposes
 - Personal data

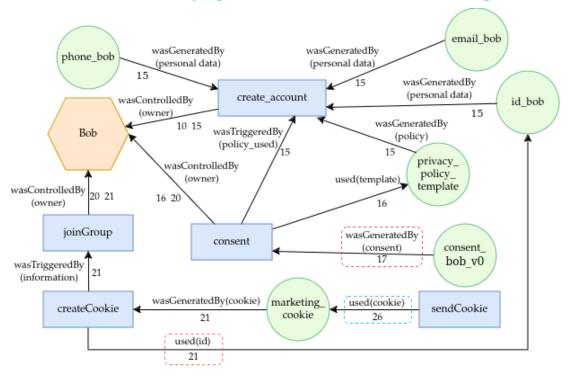

A provenance graph exemple

Prototype Architecture



Prototype: an exemple

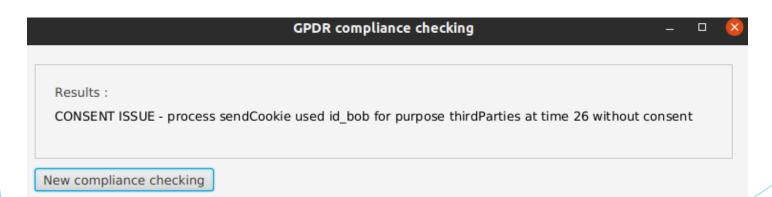
Prolog predicate to verify consent compliance



- Bob has given consent for analysis purposes only (represented by consent_bob_v0)
- Only process using personal data:
 - createCookie
 - sendCookie

Prototype: an exemple

P = sendCookie, associated to a purpose **PU= sendThirdParties**.


consent(id_bob, sendThirdParties,T)

→ don't exist

consent(id_bob, analysis, 17)

The interface shows:

Future work

- a) Provenance graph generator for more extensive testing
- b) Improvements on the tool interface: including a visualization model
- c) Extension to other regulations

Bibliography

- [1] D. Basin, S. Debois, and T. Hildebrandt. On purpose and by necessity: Compliance under the gdpr. In *Financial Cryptography and Data Security*, pp. 20–37. Springer Berlin Heidelberg, 2018.
- 2. [2] L. Moreau, et al. The Open Provenance Model core specification (v1.1). *Future Generation Computer Systems*, vol. 27, no. 6, pp. 743–756, June 2011.
- [3] A. Tauqeer, A. Kurteva, T. Raj Chhetri, A. Ahmeti, and A. Fensel. Automated gdpr contract compliance verification using knowledge graphs. *Information*, vol. 13, no. 10, 2022.
- 4. [4] European Union. General data protection regulation, 2016. Accessed: 2024-08-23.