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Introduction

Operational Technology (OT) 
& SCADA Vulnerabilitie

Evolving Cyber Threats in 
Critical Infrastructure (CI)
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Introduction: 
Research Aim

• Research Question:
o How can secondary threat intelligence 

sources enhance real-time detection of 
security breaches in SCADA systems?

• Methodology: 
o Utilizing Bayesian inference and dynamic 

anomaly scoring to continuously update and 
improve situational awareness.

• Contribution: 
o GenAttackTracker framework 
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Online Anomaly Detection

• Supervisory Control Data
o Time-series data
oAnomalies = deviation from expected normal behavior

• Challenges in Anomaly Detection
oDiverse Causes of Anomalies
o Identifying True Threats
oReal-time Detection
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Suspicious Activity Markers

Contextual data points that provide additional 
insights into potential cyber threats.

Examples:

Unusual data transfer activity.
Login attempts from suspicious locations.
Communication through non-standard ports.
Abnormal spikes in traffic (e.g., SMTP, DNS).

...
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Bayesian Analysis

Continuously updates the probability of an attack 
as new data becomes available.

Why Bayesian?

• Handles uncertainty in threat detection.
• Incorporates both control data and Suspicious Activity Markers (SAMs) for more 

informed decisions.
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AttackTracker Framework

• Hierarchical distributed network of detectors.
o Local detectors: Behavior Predictor + Inference Engine
oHigher level detectors: Inference Engine

• Key components:
oBehavior Predictor: MTCN
o Inference Engine: Dynamic Scoring , Modified z-score
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GenAttackTracker Framework
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GenAttackTracker Framework
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Inference Engine – Bayesian Model 

• Hierarchical Model
• Local Detectors
• Intermediate Level
• Global Level

• Key formula:
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Experiments

• Baseline: AttackTracker framwork
• Dataset: SWaT (Secure Water Treatment Testbed)

• 11 days of operation, including 7 days of normal behavior and 4 days of 
cyberattacks.

• 51 variables: Sensors (e.g., flow, pressure) and actuator states (e.g., valve 
positions, pump statuses).

• Implementation:
• Toolset: TensorFlow, PyMC3, Scikit
• Monte Carlo Simulation
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Experiments

• Insightful results
• Provided more reliable threat assessments by continuously updating the 

posterior probabilities.
• Incorporating SAMs refined
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Conclusion

• GenAttackTracker Contributions:
• Combined dynamic anomaly scoring with Bayesian inference for enhanced 

situational awareness.

• Key Achievements:
• Improved Threat Detection: Increased accuracy in identifying cyber threats with 

fewer false positives.
• SAM Integration: Suspicious Activity Markers provided additional context, 

improving the reliability of threat assessments.
• Monte Carlo Simulation: Reduced uncertainty in attack likelihood estimation 

through probabilistic simulations.

• Future Work:
• Expand the model to analyze interconnected infrastructures.
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Thank you!

Questions
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