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About Me

Pavel Loskot joined the ZJU-UIUC Institute as Associate Professor in January 2021. He

received his PhD degree in Wireless Communications from the University of Alberta in Canada,

and the MSc and BSc degrees in Radioelectronics and Biomedical Electronics, respectively,

from the Czech Technical University of Prague. He is the Senior Member of the IEEE, Fellow

of the HEA in the UK, and the Recognized Research Supervisor of the UKCGE.

In the past 25 years, he was involved in numerous industrial and academic collaborative

projects in the Czech Republic, Finland, Canada, the UK, Turkey, and China. These projects

concerned mainly wireless and optical telecommunication networks, but also genetic regulatory

circuits, air transport services, and renewable energy systems. This experience allowed him to

truly understand the interdisciplinary workings, and crossing the disciplines boundaries.

His current research focuses on statistical signal processing and importing methods from

Telecommunication Engineering and Computer Science to model and analyze systems more

efficiently and with greater information power.
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Objectives

Explore basic ideas:

• about a few chosen topics in applied mathematics

• create understanding and raise awareness about what exist

• initially (this talk), allow for simplifications and inaccuracies

• inspire applications outside mathematics
→ engineering, machine learning

Topics

1. Mathematical objects

2. Products between these objects

3. Geometric algebra

4. Curves and splines
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Motivation

Mathematics

• focus on accuracy and generating fundamental knowledge

• applied mathematics now also include numerical methods (and AI/ML)
→ strong overlap with Computer Science

• widespread use of mathematical modeling
→ mathematical physics (reality problems)

Engineering

• focus on applications and products

• rapidly growing complexity

• need for new tools
→ beyond a black-box (AI/ML)
→ mathematics is a natural choice

This talk

• not difficult to follow the math, but difficult to imagine the applications

• motivate building bridges between engineering and mathematics
→ inspire mathematicians
→ equip engineers with new tools



Part 1: Vector Products
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Numbers in more dimensions

Real numbers R
x = n+ f ≡ fn, n ∈ Z, f ∈ [0,1]

• n is an integer index of the unit-length boxes

• f is a fractional part (of unit-length box)

• natural total ordering

• form a Group under both addition and multiplication

Group (G,◦)
• binary operation ◦ is associative: a◦ (b◦ c) = (a◦b)◦ c

• identity (neutral) element e ∈G: a◦ e = e◦a = a ∀a ∈G

• inverse element b ∈G, for every a ∈G: a◦b = b◦a = e

Complex numbers C = R2

z = x+ iy = (nx+ iny)+ ( fx+ i fy)

• (nx+ iny) is a Gaussian integer (or box index)

• ( fx+ i fy) ∈ [0,1]2 (unit area 2D box)

• no total ordering

• represent vectors in R2: x+ iy =
√

x2+ y2 ei∠(x,y), i =
√
−1
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Numbers in more dimensions (cont.)

Quaternion numbers: H = R4

h = a+ ib+ jc+kd

= ( a
↓

scalar
part

, b,c,d
︸︷︷︸

vector
part

) ∈ R4

−i = (−1)i ij = −ji = k

−j = (−1)j jk = −kj = i

−k = (−1)k ki = −ik = j

i2 = j2 = k2
= ijk = −1

~ı , (0,1,0,0)

~ , (0,0,1,0)

~k , (0,0,0,1)

Basic properties

• Hamiltonian product
→ multiply polynomials aaa = (a1+ ia2+ ja3+ka4) and bbb = (b1+ ib2+ jb3+kb4)

→ associative, but not commutative

• conjugate
aaa = (a1,a2,a3,a4) ⇒ aaa∗ = (a1,−a2,−a3,−a4)

(a1+ ia2+ ja3+ka4)∗ = a1− ia2− ja3−ka4

aaa∗ = −1

2

(

aaa+ iaaai+ jaaaj+kaaak
)

(not valid for complex numbers)

(aaabbb)∗ = bbb∗aaa∗ , aaa∗bbb∗

• also

scalar part:
1

2
(aaa+aaa∗) , vector part:

1

2
(aaa−aaa∗) , aaabbb−1

, bbb−1aaa (division)
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Numbers in more dimensions (cont.)

Norms of quaternions

‖aaa‖ =
√

aaaaaa∗ =
√

aaa∗aaa =
√

a2
1
+a2

2
+a2

3
+a2

4
⇒ aaaaaa∗

‖aaa‖2
= 1 ⇒ aaa−1

=
aaa∗

‖aaa‖2

Describing rotations in 3D using quaternions

• pure quaternion: Re{uuu} = 0 (real part)

uuu = (ux,uy,uz) = iux+ juy+kuz

• Euler’s rotation theorem: vector uuu (Euler axis) and (rotation) angle θ

uuuuuu∗ = (0+ iux+ juy+kuz) (0− iux− juy−kuz) = 1

• extension of Euler’s formula (Taylor expansion of exp. function)

qqq = e
θ
2
uuu
= e

θ
2

(iux+juy+kuz) = cos
θ

2
+uuusin

θ

2
⇒ qqq−1

= e−
θ
2
uuu

• to rotate ppp= (px, py, pz) about qqq by θ to rrr = (rx,ry,rz), use linear transformation

L(ppp) = qqq (0, ppp)qqq−1
= (0,rrr) (conjugation), L(qqq) = (0,qqq)

Dot and cross products of pure quaternions

aaa ·bbb = 1

2

(

aaa∗bbb+bbb∗aaa
)

=
1

2

(

aaabbb∗+bbbaaa∗
)

, aaa×bbb =
1

2
(aaabbb−bbbaaa)
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Vector (Linear) Spaces

Definition

• a set of vectors that can be scaled by scalars and added together
→ vector elements and scalars ∈ F (a field)

• vectors have magnitude and direction

• vector space has finite or countably infinite # dimensions

Axioms of vector spaces

• associativity, commutativity, distributivity

• ∃ identity and inverse element

Vector space with additional structures

• algebras
→ linear algebra, polynomial rings, Lie algebras, geometric algebras

• topological vector spaces
→ function spaces, inner product spaces, normed spaces, Hilbert spaces

Key concepts of vector spaces

• linear independence

• linear subspaces (closed under linear combination)

• linear spans (spanning or generating sets of vectors)

• bases (linearly independent vectors spanning sub-spaces)
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Vector (Linear) Spaces (cont.)

Hilbert space

• vector space with inner product 〈aaa,bbb〉
→ induces distance d(aaa,bbb) = ‖aaa−bbb‖ =

√
〈aaa−bbb,aaa−bbb〉

• generalizes finite dimen. Euclidean spaces to infinite # dimensions
→ special case of Banach space, e.g. function space: 〈 f ,g〉 =

∫

f (t)g(t)dt

• countably infinite dimensions
→ can be described by square-summable infinite sequences

Euclidean space

• special case of Hilbert space

• vectors (Cartesian coordinates) in Rn with dot-product

→ symmetric, distributative, positive definite

aaa ·bbb =
∑

i

aibi = ‖aaa‖‖bbb‖ cosθ

• absolute convergence of infinite vector sum:∞∑

i=0

aaa(i) ⇔
∞∑

i=0

‖aaa(i)‖ <∞

Applications

• Fourier analysis, eigen-analysis, ODE/PDE, ergodic theory, ...
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Vector Products
Cross product (in R3)

• anti-commutative, distributive (over addition), anti-associative

aaa×bbb = (a2b3−a3b2)i+ (a3b1−a1b3)j+ (a1b2−a2b1)k

aaa×aaa = 0, aaa×bbb = −(bbb×aaa)

aaa×bbb = det





i j k

a1 a2 a3

b1 b2 b3





• basis vectors
~ı×~ = ~k, ~×~ı = −~k, ~ı×~ı = 0

~×~k =~ı, ~k×~ = −~ı, ~×~ = 0

~k×~ı =~, ~ı×~k = −~, ~k×~k = 0

Lie algebra (in R3)

• e.g. vector space R3 with vector addition and cross product

• Lie bracket (commutator): [aaa,bbb] , aaa×bbb

• distributivity: aaa× (bbb+ ccc) = (aaa×bbb)+ (aaa× ccc)

• bi-linearity: [Aaaa+Bbbb,ccc] = A[aaa,ccc]+B[bbb,ccc], A,B ∈ R
• Jacobi identity: aaa · (bbb× ccc)+bbb · (ccc×aaa)+ ccc · (aaa×bbb) = 0
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Vector Products (cont.)

Cross product inverse (in R3)

• given aaa,ccc, find bbb, so that aaa×bbb = ccc ⇒ bbb = 1

‖aaa‖2ccc×aaa+ t aaa, t ∈ R

Linear transformation MMM ∈ R3

(MMMaaa)× (MMMbbb) = (det MMM)MMM−T (aaa×bbb)

Rotation invariance about vector (axis) aaa×bbb

(RRRaaa)× (RRRbbb) = RRR(aaa×bbb), RRR : rotation matrix, detRRR = 1

Triple products (in R3)

aaa · (bbb× ccc) = bbb · (ccc×aaa) = ccc · (aaa×bbb) (with absolute value , volume)

aaa×bbb = aaa× ccc, aaa , 0 ⇒ aaa× (bbb− ccc)
︸      ︷︷      ︸

aaa‖ (bbb−ccc)

= 0 ⇒ ccc = bbb+ taaa, t ∈ R

aaa ·bbb = aaa · ccc ⇒ aaa · (bbb− ccc)
︸    ︷︷    ︸

aaa⊥ (bbb−ccc)

= 0

aaa× (bbb× ccc) = bbb(aaa · ccc)− ccc(aaaḃbb), (aaa×bbb)× ccc = bbb(ccc ·aaa)−aaa(bbb · ccc)

(aaa×bbb) · (ccc×ddd) = (aaa · ccc)(bbb ·ddd)− (aaa ·ddd)(bbb · ccc)
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Vector Products (cont.)
Norms of vector products (in R3)

aaa ·bbb = ‖aaa‖‖bbb‖ cosθ, ‖aaa×bbb‖ = ‖aaa∧bbb‖ = ‖aaa‖ ‖bbb‖ |sinθ|
Lagrange identity

‖aaa‖2 ‖bbb‖2− (aaa ·bbb)2
=

∑

1≤i< j≤n

(aib j−a jbi)
2, n ≥ 1 (= ‖aaa×bbb‖2 , n = 3

Inner product

• associated with inner product (vector) spaces
→ inner product induces norm i.e. a normed vector space

〈aaa,bbb〉 = bbb∗Taaa, 〈 f ,g〉 =
∫

f (t)g∗(t)dt, 〈AAA,BBB〉 = tr
{

AAABBB∗T
}

• conjugate symmetry (over field C), linearity, positive definite

• can be generalized as Hermitian inner product (over field C)

〈aaa,bbb〉 = bbb∗T MMMaaa, MMM : Hermitian matrix

Outer (exterior, wedge) product

• generalization of cross-product to Rn, n > 3

• generalization to multiple vectors
→ the product is then a multivector

• e.g.: aaa∧bbb is a bivector spanned by aaa and bbb
→ oriented surface
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Vector Calculus

Scalar and vector fields

• assign scalar or vector to every point in space (-time)
→ space can be a manifold
→ can be generalized to tensor fields (e.g. metric tensor)

• the assignment creates a structure for that space

Pseudovectors vs. true vectors

• induced field may change direction when object or frame of reference are
rotated, reflected or otherwise transformed

• examples
→ magnetic field, angular momentum, oriented planes in computer graphics
→ curl of vector field and vector cross product both yield pseudovectors

Vector algebra

• vectors aaa,bbb ∈ R3, and scalar A ∈ R
aaa+bbb, Aaaa, aaa ·bbb, aaa×bbb, ccc · (aaa×bbb), ccc× (aaa×bbb)

Differential vector operators

• scalar field f , and vector field FFF
→ gradient, divergence, curl, (vector) Laplacian
→ differential forms

field
vector

scalar
field

∇
2 f

∇ × FFF
∇

2FFF

∇ f

∇ · FFF
f

FFF
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Matrix Products

Canonical multiplication

AAABBB : Rm1×n1×Rn1×n2 7→ Rm1×n2

→ systematic collection of dot-products (associative, distributive)

Hadamard product

AAA⊙BBB : Rm×n×Rm×n 7→ Rm×n

→ element-wise multiplication (commutative, associative, distributive)

Kronecker product

AAA⊗BBB =





a11BBB · · · a1n1
... . . . ...

am11BBB · · · am1n1
BBB




: Rm1×n1×Rm2×n2 7→ Rm1m2×n1n2

→ bilinear, associative, non-commutative

(AAA⊗BBB)−1
= AAA−1⊗BBB−1, (AAA⊗BBB)T

= AAAT ⊗BBBT , det(AAA⊗BBB) = (det AAA)m(det BBB)n

AAA⊕BBB = AAA⊗ IIIm+ IIIn⊗BBB (Kronecker sum)

Mixed products
(AAA⊗BBB)(CCC⊗DDD) = (AAACCC)⊗ (BBBDDD)

(AAA⊗BBB)⊙ (CCC⊗DDD) = (AAA⊙CCC)⊗ (BBB⊙DDD)

Frobenius inner product

〈AAABBB〉F = tr
{

AAAT BBB
}
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Tensors

Multi-dimensional arrays?

• yes, but one (very narrow) interpretation

Geometric vectors?

• magnitude & direction the same in different bases

• rank 1 tensor, contravariant vector

Key properties

• tensor can be represented as ordered list of numbers (vector) in given basis

• object represented by a tensor does not change in different bases
→ not every matrix is a tensor

• tensor rank (order, degree) is # dimensions of the object it represents

Contravariant vector (1,0)-tensor

• basis are columns of BBB, so vvv = BBB · ṽvv
• basis rotation & scaling via TTT

vvv = BBBTTT
︸︷︷︸

basis

· TTT−1ṽvv
︸︷︷︸

components

Covariant vector (covector) (0,1)-tensor

• co-varies with basis transformation

• it is a linear function f (xxx) = 〈vvv, xxx〉
• value f (xxx) is independent of basis
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Tensors (Cont.)

Linear transformation (1,1)-tensor

• change of basis: ỹyy = TTTyyy and x̃xx = TTT xxx

• i.e., if yyy = AAAxxx, then ỹyy = ÃAAx̃xx where ÃAA = TTT AAATTT−1

→ TTT−1 is contravariant
→ TTT is covariant
→ TTT AAATTT−1 is (1,1)-tensor, i.e., rank 2 tensor (2×2 matrix)

Bilinear transformation B : uuu,vvv 7→ R

B(uuu+www,vvv) = B(uuu,vvv)+B(www,vvv)

B(λuuu,vvv) = λB(uuu,vvv)

B(uuu,vvv+www) = B(uuu,vvv)+B(uuu,www)

B(uuu,λvvv) = λB(uuu,vvv)

⇒ B(uuu,vvv) = uuuT AAAvvv =

n∑

i, j=1

ai, juiv j = Ai ju
iv j

• AAA is rank (0,2)-tensor (with two covectors)

• uuu and vvv are (1,0)-tensors (contravariants)

• with transformation of basis TTT , Ãi j = Ai jT
i
k
T

j

l
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Tensors (Cont.)

Rank n tensor in Rm

• have n indices, 1 ≤ i ≤ m, and mn components
→ plus certain structure defined by transformation rules

• generalization of matrices, e.g. in R3

AAA = [ai jk] (matrix) −→ AAA =
[

ai jk or ai j
k or ai

jk or ai jk · · ·
]

(tensor)

Einstein’s summation convention

• repeated indices are summed over

• each index can appear at most twice

• each term must contain identical
non-repeated indices

• index lowering and index raising:

gi jA j = Ai, gi jA
j
= Ai (g : metric tensor)

• dot and cross products

aaa ·bbb = aib
j, (aaa×bbb)i = ǫi jka

jbk

ǫi jk =~ı · (~×~k) = [i, j,k] (permutation tensor)

aiai ,

∑

i

aiai

aikai j ,

∑

i

aikai j

Ai jb j ,

∑

j

Ai jb j
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Tensors (Cont.)

Summing tensors

• must have the same rank and the same indices, e.g., rank-2 tensors

Ai j
+Bi j, Ai j+Bi j, ,Ai

j
+Bi

j, Ai
j+Bi

j

Dot-product of tensors

• known as tensor contraction
→ set unlike indices equal and then sum using Einstein summation

• tensor rank reduced by 2, e.g. rank-2 tensor

contr
(

T i
j

)

= T i
i ≡
∑

i

T i
i ∈ R

Tensor product

• product between two vector spaces A and B over the same field

• it is a bilinear map:

A×B 7→ A⊗B ⇒ (aaa ∈ A,bbb ∈ B) 7→ (aaa⊗bbb) ∈ A⊗B

• (aaa⊗bbb) is a decomposable tensor
→ e.g. product of rank-1 tensors: aaa⊗bbb = aaabbbT (matrix)

• applications
→ A⊗B 7→C can be uniquely factored into two linear maps
→ metric tensor is created as product of the base tensor with itself
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Take-Home Messages

Mathematical objects

• functions, vectors, matrices

• numbers in Rn, for n = 1,2,4:
→ real, complex, quaternions)

• multivectors, tensors

• vector spaces
Euclidean, Hilbert, Banach, ...

• sets, graphs, manifolds

• groups, fields, rings

Manipulating math objects

〈Object1〉 (operation) 〈Object2〉 −→ 〈Object3〉
(Operator) 〈Object1〉 −→ 〈Object2〉

• often group, i.e. Objecti ∈Group, for ∀i

• algebras (linear, vector, Lie, Clifford, ...)
→ algebraic operations (especially addition and multiplication)

• calculus
→ integral, differential, vector calculus

• computing
→ assign numerical values to math objects
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Take-Home Messages (cont.)

Vector products

• inner product
→ dot product

• outer product
→ exterior, wedge, cross products

• combined (triple) products

• matrix products
→ canonical, Hadamard, Kronecker, ...

• tensor product

• geometric product
→ geometric algebra

Product properties

• associative, commutative, distributive
→ anti-commutative, anti-associative



Part 2: Geometric Algebra
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Geometric Algebra

Geometric algebra

• geometric properties

• focus on applications

Clifford algebra

• mathematical properties

• focus on abstractions

Scalers

• scalars, 0-dimensional, manipulated via algebra for real numbers

Vectors

• 1-dimensional, vector algebra including scaling and adding vectors

• all vectors with the same magnitude (length) and direction are equal
→ directions may differ in higher-dimensional spaces

• decomposition into a basis of (orthogonal) unit vectors

~aaa =
∑

i ai~ei, ~aaa = a1~ı+a2~ +a3
~k (in R3)
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Geometric Algebra (cont.)

Bivectors

• 2-dimensional oriented surface (bivector magnitude == surface area)

• all bivectors with the same magnitude and orientation are equal
→ more tricky in higher-dimensional spaces

• bivectors can be morphed without changing magnitude and orientation

• morphing enables bivector addition in higher dimensions
→ scale and morph them before adding them together

• decomposition into a basis of (orthogonal) unit bivectors

~AAA = A1
~I+A2

~J+A3
~K (in R3)
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Geometric Algebra (cont.)

Trivectors

• 3-dimensional oriented volumes

• magnitude == volume size

• decomposition into unit trivectors

• can be generalized to k-vectors

any order k-vectors can be summed

Outer products

• vector ∧ bivector = trivector

• product of basis vectors:

~I =~ı∧~, ~J =~∧~k, ~K =~ı∧~k
0

~III~j

~i

~k

~JJJ

~KKK

Geometric product

• key concept of geometric algebra

~aaa~bbb = ~aaa ·~bbb
︸︷︷︸

scaler

+ ~aaa∧~bbb
︸︷︷︸

bivector

= (a1i+a2j+a3k)(b1i+b2j+b3k) c.f. A+ iB ∈ C
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Geometric Product

~aaa~bbb = ~aaa ·~bbb+~aaa∧~bbb
Properties

• vectors can be divided

~aaa~aaa = ~aaa ·~aaa
︸︷︷︸

‖~aaa‖2
+ ~aaa∧~aaa
︸︷︷︸

0

=
∥
∥
∥~aaa
∥
∥
∥

2 ⇒ ~aaa
2
=
∥
∥
∥~aaa
∥
∥
∥

2 ⇒ ~aaa
−1
=
~aaa
∥
∥
∥~aaa
∥
∥
∥

2

• swapping vectors

~bbb~aaa = ~aaa ·~bbb−~bbb∧~aaa ⇒
~aaa ·~bbb =

1
2

(

~aaa~bbb+~bbb~aaa
)

~aaa∧~bbb =
1
2

(

~aaa~bbb−~bbb~aaa
)

(inner product)

(outer product)

• basis vectors

i2 =~ı~ı =
∥
∥
∥~ı
∥
∥
∥

2
= 1, j2 =~~ =

∥
∥
∥~
∥
∥
∥

2
= 1, k2

= ~k~k =
∥
∥
∥
∥
~k
∥
∥
∥
∥

2

= 1

~ı ⊥~ ⊥ ~k ⇒ ~ı ·~ =~ı ·~k =~ ·~k = 0 ⇒
~ı~ = ~ı∧~ = −~~ı
~ı~k = ~ı∧~k = −~k~ı
~~k = ~∧~k = −~k~
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Geometric Product (cont.)

General procedure (for multiplying any k-vectors)

1. express vectors in terms of basis vectors ~ei

2. multiply the vectors as polynomials by distributing all terms

3. simplify the expressions using ~ei~ei = 1 and ~ei~e j = −~e j~ei

(k > 0)-vectors

• linear combinations of other k-vectors

• e.g. vectors in R2:

vvv = v0
︸︷︷︸

scaler

+v1~e1+ v2~e2
︸      ︷︷      ︸

vectors

+v3~e1~e2
︸︷︷︸

bivector

• ~e1~e2 is a pseudo-scaler
→ ~e1~e2 , i ⇒ i2 = −1
→ thus, ~vvvi and i~vvv are 90◦ rotations
→ ~vvvz = z∗~vvv are arbitrary rotations

Complex numbers

a
︸︷︷︸

scaler

+ ib
︸︷︷︸

pseudo-scaler

∈ C
~aaa~bbb = ~aaa ·~bbb+~aaa∧~bbb

(a+ ci)(c+di) = (ac−bd)+ (ad+bc)i

(a~e1+b~e2)(c~e1+d~e2) = (ac−bd)~e1+ (ad+bc)~e2
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Geometric Product (cont.)

Rotations

• unit vectors aaa and bbb

aaabbb = aaa ·bbb+aaa∧bbb = ‖aaa‖‖bbb‖cosθ+ ‖aaa‖‖bbb‖sinθ i = eiθ, and, bbbaaa = (aaabbb)∗ = e−iθ

• thus, the rotation of any vector ~ccc

~cccaaabbb = ~ccceiiθ

~cccbbbaaa = ~ccce−iθ

}

⇒ ~ccc~aaa~bbb = ~bbb~aaa~ccc

Extension to R3

vvv = a1
︸︷︷︸

scaler

+a2~e1+a3~e2
︸      ︷︷      ︸

vectors

+a4~e1~e2
︸︷︷︸

bivector

∈ R2

↓ ↓ ↓
vvv = a1
︸︷︷︸

scaler

+a2~e1+a3~e2+a4~e3
︸               ︷︷               ︸

vectors

+a5~e1~e2+a6~e1~e3+a7~e2~e3
︸                        ︷︷                        ︸

bivectors

+a8~e1~e2~e3
︸   ︷︷   ︸

trivector

∈ R3

• a8~e1~e2~e3 , a8i is a pseudo-scaler, and again, i2 = −1
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Geometric Product (cont.)

Properties in R3

• multiplying by i = ~e1~e2~e3

→ i commutes with any 3-vector:

iA = Ai, vector
i

↼−−−−−−−−−−⇁
i

bivector

i~e1 = ~e2~e3 ~e1 ⊥ ~e2~e3

i~e2 = ~e1~e3 ⇒ ~e2 ⊥ ~e1~e3

i~e3 = ~e1~e2 ~e3 ⊥ ~e1~e2

i2 = j2 = k2
= ijk = −1

• bivector can be represented by its normal vector

→ 3-vectors are scalers and vectors: a+bi+~aaa+~bbbi

• bivectors = pseudovectors:
~aaa∧~bbb
︸︷︷︸

bivector

= i ~aaa×~bbb
︸︷︷︸

vector

→ e.g. for vector field FFF: ~∇∧ ~FFF = i~∇× ~FFF
→ pseudovector basis: {~e1~e2, ~e2~e3, ~e1~e3}
• trivectors = pseudoscalars: ~aaa · (~bbb×~ccc) = i~aaa∧~bbb∧~ccc
• moreover

in R3 : scaler+bivector , quaternion

in R2 : scaler+bivector , complex number

• to rotate ~aaa by θ in plane ~BBB: e−
~BBBθ

2 ~aaa e
~BBBθ

2 , rotor∗ ~aaa rotor
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Geometric Product – Summary

Multiplying two vectors

• ~uuu ·~vvv is inner product (scaler)

• ~uuu∧~vvv is outer product (bivector)

General rules for multiplying k-vectors in any dimensions

• extract parallel and perpendicular components
→ inner product: ‖ are multiplied, ⊥ cancels out
→ outer product: ‖ cancels out, ⊥ join into higher-dimensional k-vector

• examples:
(vector) (vector) = scaler+bivector

(vector) (bivector) = vector+ trivector

(bivector) (bivector) = scalar
︸︷︷︸

inner product

+bivector+4−vector
︸     ︷︷     ︸

outer product
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Take-Home Messages
Geometric algebra

• key concepts
→ multivectors and their (geometric) product in Rn vector spaces

• multiplication allows defining (linear) maps and functions

• not all properties translate across dimensions (R2 and R3 most relevant)

• basic applications
→ rotations, reflections, translations in Rn

In general

• GA is a powerful and efficient modeling language

• GA can bring new insights and connections

• there are several different versions of GA

To remember (in R3)

• i2 = j2 = k2
= ijk = −1

• ~aaa~bbb = ~aaa ·~bbb
︸︷︷︸

inner product

+ ~aaa∧~bbb
︸︷︷︸

outer product

• ~aaa2
=
∥
∥
∥~aaa
∥
∥
∥

2

• ~ı~aaa and ~aaa~ı are 90◦ rotations

(scalar) (vector) = (vector)

(vector) (vector) = scaler+bivector

(vector) (bivector) = vector+ trivector

(bivector) (bivector) = scalar+2−vect+4−vect



Part 3: Curves



Pavel Loskot, ZJU-UIUC©2024 32/40

Bézier Curves

Curves

• describe a smooth trajectory between point P0 and point P1

→ typographic fonts, computer games, simulations, non-linear functions

• here, let’s focus on parameterized curves in 2D
→ parameters can be optimized or learned

Definition of Bézier curves

• linear interpolation (Lerp)

P(t) = (1− t)P0+ tP1 , lerp(P0,P1, t), 0 ≤ t ≤ 1

• cubic Bézier curves are most common
→ used for re-scaling images, fonts etc.

a = lerp(P0,P1, t) d = lerp(a,b, t)

b = lerp(P1,P2, t) e = lerp(b,c, t)

c = lerp(P2,P3, t) P = lerp(d,e, t)

P = P0 (−t3+3t2−3t+1)+

P1 (3t3−6t2+3t)+

P2 (−3t3+3t2)+

P3 (t3)



Pavel Loskot, ZJU-UIUC©2024 33/40

Bézier Curves (cont.)

Cubic Bézier curve

P = P0 (−t3+3t2−3t+1)+

P1 (3t3−6t2+3t)+

P2 (−3t3+3t2)+

P3 (t3)

P(t) =

3∑

i=0

Pi pi(t)

3∑

i=0

pi(t)
!
= 1 ∀t

P(t) = P0+ t (−3P0+3P1)+ t2 (3P0−6P1+3P2)+ t3 (−P0+3P1−3P2+P3)

P(t) =
[

1 t t2 t3
]





1 0 0 0

−3 3 0 0

3 −6 3 0

−1 3 −3 1





︸                     ︷︷                     ︸

characteristic matrix





P0

P1

P2

P3





• note that (control) points Pi are (2D) vectors

• different representations of the same curve
→ may differ in numerical efficiency and numerical stability

• can be generalized to any higher degrees (in 2D)
→ becomes very ineffective in controlling the curve shape
→ no local control, numerically complex and unstable
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Bézier Splines

Definition

• piecewise cubic Bézier splines
→ defined by individual control points

• pieces connect at joins (knots)
→ knot intervals (length of pieces)

Advantages

• full local control

• easy to add more segments

• num. efficiency and stability

• interpolate every 3rd point

→ mirrored control points are sufficient for continuous velocity
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Curves Continuity

Parametric continuity

C0: P(t) position

C1: P′(t) velocity

C2: P′′(t) jolt

Ci continuity implies

continuities Ci−1, . . . , C0

Caveats

• the more continuities, the less control
→ also control sensitivity greatly increased

• for cubic splines
→ all 3-rd and higher derivatives are zero
→ C2 continuity looses most control

Geometric continuity

• parameter-free and more control freedom than C-continuities

• tangent continuity: P′(u)/‖P′(u)‖
→ equivalent to G1 continuity (aligning left and right tangent vectors)

• G2 continuity is evaluated as a curvature
→ it is 1/radius of the circle locally approximating the curve

• A(t) and B(t) are Gn continuous, if

A(t) and B(g(t)) are Cn continuous for some function g(t)
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Curves Continuity (cont.)

Regular curves

• the curves with P′(t) , 0 for ∀t ≥ 0

Other curves

• Hermite splines
→ specify start and end positions and velocities
→ defined as C1 continuous

• piecewise linear function is C0

→ can be modified into cardinal spline to get C1

→ special case of cardinal spline is Catmull-Rom spline
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B-Splines
Tasks

P(t) =
[

1 t t2 t3
]





c1 c2 c3 c4

c5 c6 c7 c8

c9 c10 c11 c12

c13 c14 c15 c16









P0

P1

P2

P3





• compute [ci] to make P(t) to be C2 continuous (i.e., also G2 continuous)

Solution

• C2 implies C1 and C0 continuity between any two out of four basis functions

→ 3×
(

4

2

)

= 12 constraints

• C0, C1 and C2 continuity at the start (3 more constraints)

• the four basis functions must sum to 1 for ∀t (the 16-th constraint)
→ weights or contributions of four control points P0, P1, P2 and P3



Pavel Loskot, ZJU-UIUC©2024 38/40

B-Splines
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Take-Home Messages

Curves

• splines are curve generating procedures (via control points)

• non-uniform splines possible by adjusting knot distances

• bases in B-splines can be further scaled (by constants)

What matters

• numerical complexity and stability

• local control

• smoothness (parametric and geometric continuity)

• invariance to transformations and projections

Defining curves

• explicit mathematical expression (general and special polynomials)

• parametric expression: P(t) = [x(t),y(t),z(t)] ∈ R3

• implicit function: f (x,y,z) = 0

• projection into a plane

• constructive procedures
→ rolling a point on circle over a curve, Euclidean construction

• programmatic construction using language grammars
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Take-Home Messages (cont.)

Generalizations

• parameter vector: P(TTT ) = [x(TTT ),y(TTT ),z(TTT )] ∈ R3, TTT ∈ Rn

• increase resolution by adding more control points

• define surfaces and manifold in Rn using rank-1 curves

• study intersections of curves and surfaces

Curves considered here



Thank you!

pavelloskot@intl.zju.edu.cn
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Recommended Resources

Geometric algebra (easy to follow introductions)

https://www.youtube.com/@sudgylacmoe/playlists

Vector calculus (and many other useful math concepts)

https://www.youtube.com/@Eigensteve/playlists

Splines (and other topics related to computer graphics)

https://www.youtube.com/@acegikmo/playlists

Famous curves (specific types)

https://mathshistory.st-andrews.ac.uk/Curves/

General mathematics (variety of topics)

https://mathworld.wolfram.com/

https://www.wikipedia.org/

Algebraic Concepts (selected applied math topics for SP/ML)

https://www.iaria.org/conferences2023/filesSIGNAL23/

PavelLoskot_Keynote_AlgebraicConcepts.pdf


