

Explain Yourself

Expanding and Optimizing Models to Enable Fast Shapley Value Approximations

Holger Ziekow, Peter Schanbacher and Valentin Göttisheim Furtwangen University, Germany

Presenter: Valentin Göttisheim - email: Valentin.Goettisheim@hs-furtwangen.de

Resume

Academic Background:

- PhD candidate Data Science, Université de Haute-Alsace since 2023.
- Academic staff member Data Science, Furtwangen University since 2021.

Research Focus:

- Explainable Artificial Intelligence (XAI)
- Large Language Models (LLM)
- In industrial and medical domain

Striving for Explainable AI Models

Shift to inherently explainable models for trustworthy, transparent AI.

- **Demand for Transparency:** *Transparency fosters trust, accountability, and meets regulatory demands.*
- Complexity of Neural Networks: Non-linear, high-dimensional interactions complicate feature interpretation.
- Limitations of Post-Hoc Explanations: Approximate, sometimes inconsistent and difficult to interpret fully.
- + Advantages of Inherent Explainability: Embedding fair feature attributions directly aligns model outputs with transparency goals.

Striving for Explainable AI Models

Shift to inherently explainable models for trustworthy, transparent AI.

Explainability embedded within the loss function

Enables the model to learn fair feature attributions during training. Explicit trade-off between predictive performance an explainability.

Real-Time generation of predictions and Shapley values during inference.

Agenda

Explain Yourself - Expanding and Optimizing Models to Enable Fast Shapley Value Approximations

1. Shapley Value Landscape

2. Integrated Approach: Methodology

3. Results from Synthetic and Real-World Data

4. Conclusion and Future Directions

The Shapley Value Landscape

- Fair Principles
- Feature Attribution
- Simplifying Methods

Fair Attribution with Shapley Values [1,2,3]

Quantifies a feature's contribution to model predictions.

Fair **Principles:** Treats features as players in a coalition.

• Efficiency: Total prediction distributed among features

HOCHSCHULE FURTWANGEN UNIVERSITY

- **Symmetry:** Equal contributions receive equal values
- **Dummy:** Irrelevant features have zero attribution
- Additivity: Supports combining contributions

Benefit: Fair feature attributions **Challenge:** Computational complexity

Feature Attribution: ^[3]

The Shapley Value Landscape

- Fair Principles
 - Feature Attribution
- Simplifying Methods

Key Terms:

• $\phi_i(f)$ is the Shapley value for feature *i*.

 $\phi_i(f) = \sum_{S \subseteq N \setminus \{i\}} \frac{|S|! (|N| - |S| - 1)!}{|N|!} [f(S \cup \{i\}) - f(S)]$

- *N* is the set of all features.
- S is a subset of features not containing *i*.
- f(S) is the model's output with features in S.

The Shapley Value Landscape

- Fair Principles
- Feature Attribution
 - Simplifying Methods

Feature-Removal Approaches: [4]

HOCHSCHULE FURTWANGEN UNIVERSITY

- **Baseline:** Replace missing features with baseline values (e.g., mean, zero).
- **Marginal:** Evaluate subsets to compute marginal effects.
- **Conditional**: Account for feature dependencies via conditional expectations.

Efficient Computation:

- **KernelSHAP**^[3]: Model-agnostic; broadly applicable.
- **TreeSHAP**^[5]: Model-specific; optimized for decision trees.
- •••

Limitations: Post-hoc methods are not aligned with training.

 $\phi_i(x)$ and their approximations $\widehat{\phi}_i(x)$

Backprop

Integrated Shapley Values

Neural Network Architecture & Methodology

$$g = \arg\min_{g} \mathbb{E}\left[\left(y - g_{0}(x)\right)^{2} + \underline{\lambda} \sum_{i=1}^{N} \left(\phi_{i}(x) - \widehat{\phi}_{i}(x)\right)^{2}\right]$$

How $\widehat{\boldsymbol{\phi}}_{\boldsymbol{i}}(x)$ is Derived

Utilize KernelExplainer to compute real Shapley values $\phi_i(x)$ during training.

Learning Approximation:

- The model integrates Shapley approximations as an output
- Learning to predict $\hat{\phi}_i(x)$ by minimizing the difference between $\phi_i(x)$ and $\hat{\phi}_i(x)$

Mechanism of $\underline{\lambda}$

 λ balances the emphasis between prediction accuracy and Shapley value attributions.

Low λ Values:

- Prioritizes prediction accuracy.
- Minimizes prediction error with minimal emphasis on Shapley values.

High λ Values:

- Enhances Shapley value precision and explainability.
- Increases the weight of explainability loss, improving feature attribution accuracy.

Results from Synthetic and Real-World Date HFU

Experimental Design to Evaluate Shapley Integration

Experimental Setup

Objective: Demonstrate the impact of embedding Shapley values on accuracy and interpretability by varying the λ parameter.

Synthetic Dataset:

- Created to observe trade-offs between prediction accuracy and explainability.
- Includes controlled linear and complex feature relationships.

Real-World Dataset (Wine Quality):

- Source: Wine-quality-red dataset from OpenML.
- Features like 'sulphates', 'alcohol', and 'total sulfur dioxide'.

Architecture and Training

Input Layer: 3 nodes (one for each feature).

Hidden Layers:

- Layer 1: 16 neurons, Leaky ReLU activation.
- Layer 2: 8 neurons, Leaky ReLU activation.

Output Layer:

- 1 Target Prediction y
- 3 Shapley Value Approximations $(\phi^1(x), \phi^2(x), \phi^3(x))$

Training Configurations:

- $\lambda = 0$: Accuracy-focused, with minimal emphasis on Shapley values.
- $\lambda = 1$: Balanced, with equal weight on prediction accuracy and explainability.
- $\lambda = 1000$: Shapley-focused, prioritizing interpretability over prediction accuracy.

Experiment I.

Figure: Learning Curves with MSE for $\lambda \in \{0, 1, 100\}$ models (left to right) for the outcome of interest y (blue) and the corresponding Shapley values (green, red, orange).

x_1 x_2 \boldsymbol{x}_3 0.5 0.2 $\lambda = 0$ 0 0.0 0.1 $^{-1}$ -0.5 0.0 -2 . 0.8 1.0 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.6 0.8 1.0 1.2 0.0 1 0.4 0.5 0 $\lambda = 1$ 0.2 $^{-1}$ 0.0 0.0 -2 -0.50.8 1.0 1.0 0.8 1.0 1.2 0.0 0.4 0.6 0.0 0.2 0.4 0.6 0.8 0.6 0.1 0.05 0.5 0.0 $\lambda = 100$ 0.0 -0.10.00 -0.2-0.5 0.05 -0.31.0 0.0 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 0.6 0.8 0.2 0.0 1.0 1.2 12 SHAP values for y=A vs feature

Figure: Shapley values of features (left to right) of models $\lambda \in 0, 1, 100$ (top to bottom).

Synthetic Dataset

Design:

- Target $y = 2 \cdot x_1 + \frac{1}{2}\epsilon$ where x_1 is the main feature with noise ϵ .
- x_2 : Independent, however, non-linear transformation of x_1 and y.
- x_3 : Independent, uniformly distributed.

Findings:

- Higer λ :
 - Correct attributions, improving explainability.
 - Reduces MSE for Shapley values.
- Trade-off in prediction accuracy vs. interpretability

Experiment II.

Figure: Learning Curves with MSE for $\lambda \in \{0, 1, 1000\}$ models (left to right) for the outcome of interest y (blue) and the corresponding Shapley values (green, red, orange).

Alcohol **Sulphates Total Sulfur Dioxide** 1.0 1.5 0.5 1.0 0.5 $\lambda = 0$ 0.5 0.0 0.0 0.0 -0.5-0.5-0.5 14 0.8 1.0 150 200 250 10 12 0.4 0.6 1.2 50 100 1. 0 0.5 0.2 1.0 0.0 $\lambda = 10$ 0.5 0.0 -0.2 0.0 -0.5 -0. -0.514 10 12 0.4 0.6 0.8 1.0 1.2 1. 0 50 100 150 200 250 0.6 0.0 1.0 $\lambda = 1000$ 0.4 0.5 -0.1 0.2 0.0 0.0 -0.2 -0.5 10 12 14 0.8 1.0 1.2 1.4 0 50 100 150 200 250 0.4 0.6 13 SHAP values for y vs feature

Figure: Shapley values of features (left to right) of models $\lambda \in 0, 1, 1000$ (top to bottom)

Wine Quality Dataset

Data Source:

 Wine-quality-red dataset from OpenML^[6].

Features Used:

 'sulphates,' 'alcohol,' and 'total sulfur dioxide' chosen by explorative analysis

Findings:

- Partial dependency plots reveal more stable Shapley values at higher $\boldsymbol{\lambda}$

Conclusion

- Embedding Shapley values aligns feature attributions to fair principles during training.
- Adjusting λ enables a flexible tradeoff between accuracy and interpretability.
- Both synthetic and real-world experiments show that increasing λ enhances explainability.

Future Research Directions

- Change approach to align feature attributions to improve scalability.
- Extending experiments to complex architectures and broader data sets could expand application potential.
- Evaluating performanceinterpretability trade-off.

Questions?

Valentin Göttisheim – Valentin.Gottisheim@hs-furtwangen.de

References

- L. Shapley, "Notes on the n-Person Game -- II: The Value of an n-Person Game.", Santa Monica, Calif.: RAND Corporation, 1951.
- L. Merrick and A. Taly, "The Explanation Game: Explaining Machine Learning Models Using Shapley Values" *Machine Learning and Knowledge Extraction*, Springer International Publishing, CD-MAKE 2020, pp. 17-38, Dublin, Ireland, August 25–28, 2020.
- 3. S. Lundberg and S. Lee, "A Unified Approach to Interpreting Model Predictions", *Advances in Neural Information Processing Systems*, pp. 4765–4774, 2017.
- 4. H. Chen, I. Covert, and S. Lundberg, "Algorithms to estimate Shapley value feature attributions", *Nature Machine Intelligence 5*, pp. 590–601, 2023
- 5. S. Lundberg, G. Erion, H. Chen, et al., "From local explanations to global understanding with explainable AI

for trees", Nature Machine Intelligence 2, pp. 56–67, 2020.

OpenML, "Red Wine Quality Dataset. Dataset", [Online] https://openml.org/search?type=data&status=active&id=40 691, [retrieved: 10, 2024].

Backup: House Price Prediction Example

Model Prediction: \$440,000

- 1.Square Footage (120m²): \$120,000
- 2. Location (Valencia): \$200,000
- 3.Bedrooms (4): \$120,000
- 4. Proximity to Park (100m): \$0

Assumptions of Fair Attribution:

- 1. Efficiency: All features
- 2. Symmetry: Square Footage and Location
- 3. Dummy: Proximity to Park

...

Efficiency: Total contribution equals the model's prediction.

Symmetry: Features with equal contributions receive equal attribution.

$$\begin{split} f(\textit{Location} \cup \textit{Square Footage}) &- f(\textit{Location}) = 120,000\\ f(\textit{Location} \cup \textit{Bedrooms}) - f(\textit{Location}) = 120,000\\ \phi_{\textit{Square Footage}} &= \phi_{\textit{Bedrooms}} = 120,000 \end{split}$$

Dummy: Features with no impact receive zero attribution.

 $f(S \cup Proximity \ to \ Park) - f(S) = 0$ for all subsets S $\phi_{Proximity \ to \ Park} = 0$