

Explain Yourself

Expanding and Optimizing Models to Enable Fast Shapley Value Approximations Expanding and Optimizing Models to Enable Fast Shapley
Approximations
Holger Ziekow, Peter Schanbacher and Valentin Göttisheim
Furtwangen University, Germany
Presenter: Valentin Göttisheim - email: Valentin.Goettisheim@hs-

Holger Ziekow, Peter Schanbacher and Valentin Göttisheim Furtwangen University, Germany

Resume

Academic Background:

-
- Resume
Academic Background:
• PhD candidate Data Science, Université de Haute-Alsace since 2023.
• Academic staff member Data Science, Furtwangen University since 2021. **Resume**
Academic Background:
• PhD candidate Data Science, Université de Haute-Alsace since 2023.
• Academic staff member Data Science, Furtwangen University since 2021.
Research Focus: • Le Carrice
• PhD candidate Data Science, Université de Haute-Alsace
• Academic staff member Data Science, Furtwangen Univer
Research Focus:
• Explainable Artificial Intelligence (XAI)
• Large Language Models (LLM)
• In i

Research Focus:

-
- Large Language Models (LLM)
- In industrial and medical domain

Striving for Explainable AI Models **FURTIVERS ALL ALL ASSES AND ALL ASSESS AND ALL ASSESS AND ALL AND AVERENT AVANGER AT ALL AND FURTWARGER AT ALL AND FURTWARGER AND ALL AND AND REAL ASSESS TO A LATER AND A LATER AND REAL**

Shift to inherently explainable models for trustworthy, transparent AI.

- Demand for Transparency: Transparency fosters trust, accountability, and meets regulatory demands.
- Complexity of Neural Networks: Non-linear, high-dimensional interactions complicate feature interpretation.
- Limitations of Post-Hoc Explanations: Approximate, sometimes **THE** inconsistent and difficult to interpret fully.
- Advantages of Inherent Explainability: Embedding fair feature \pm attributions directly aligns model outputs with transparency goals.

Striving for Explainable AI Models

Shift to inherently explainable models for trustworthy, transparent AI.
 Explainability embedded within the loss function

Shift to inherently explainable models for trustworthy, transparent AI.

Explainability embedded within the loss function

Enables the model to learn fair feature attributions during training.

Explicit trade-off between predictive performance an explainability.

Real-Time generation of predictions and Shapley values during inference.

Agenda

Agenda
Explain Yourself - Expanding and Optimizing Models to Enable Fast Shaple
Approximations
1. Shapley Value Landscape
2. Integrated Approach: Methodology Agenda

Explain Yourself - Expanding and Optimizing Models to Enable Fast Shapley Value

Approximations
 **1. Shapley Value Landscape

2. Integrated Approach: Methodology

3. Results from Synthetic and Real-World Data** Agenda
Explain Yourself - Expanding and Optimizing Models to Enable Fast Shapley Value
Approximations Approximations

Approximations
 **1. Shapley Value Landscape

2. Integrated Approach: Methodology

3. Results from Synthetic and Real-World Data

4. Conclusion and Future Directions** 1. Shapley Value Landscape
2. Integrated Approach: Methodology
3. Results from Synthetic and Real-World Data
4. Conclusion and Future Directions

Fair Attribution
 Fair Attribution
 Landscape

• Fair Principles

• Fair Principles

• Feature Attribution

• Simplifying Methods

• Simplifying Methods

• Simplifying Methods

• Simplifying Methods

• Dummy:

• Addi The Shapley Value Landscape

- Fair Principles
- Feature Attribution
-

Fair Attribution with Shapley Values [1,2,3]

FORESCHULE HOCHSCHULE HORE FURTHALL PRINCES
Quantifies a feature's contribution to model
predictions.
Fair Principles: Treats features as players in
a coalition. predictions.

Fair Principles: Treats features as players in a coalition.

- Efficiency: Total prediction distributed among features
- Symmetry: Equal contributions receive equal values
- Dummy: Irrelevant features have zero attribution
- **Additivity:** Supports combining contributions

Benefit: Fair feature attributions Challenge: Computational complexity

Feature Attribution: [3]

**Feature Att

The Shapley Value

Landscape**

• Fair Principles

• Feature Attribution

• Simplifying Methods

• Sinsub

• Sinsub The Shapley Value Landscape

- Fair Principles
	- Feature Attribution
-

Key Terms:

 $i \cup J$ - \bigvee -

- $\phi_i(f)$ is the Shapley value for feature $\,$ i.
- N is the set of all features.

 $S\subseteq N\setminus\{i\}$ and the set of $S\subseteq N\setminus\{i\}$

- S is a subset of features not containing i.
- $f(S)$ is the model's output with features in S.

Example Shapley Value
 **• Baseline: Replace

• Baseline** values (e
 • Marginal: Evaluate
 • Marginal: Evaluate
 • Conditional: Acco

via conditional explane

• Simplifying Methods

• Simplifying Methods

• TreeSHA The Shapley Value Landscape

- Fair Principles
- -

- Feature-Removal Approaches: [4]

 Baseline: Replace missing features with

baseline values (e.g., mean, zero).

 Marginal: Evaluate subsets to compute FURTHOLD

FURTHANGEN HIPU

FURTHANGEN HIPU

• Baseline: Replace missing features with

baseline values (e.g., mean, zero).
• Marginal: Evaluate subsets to compute

marginal effects. BREWANSEN HEU

Baseline: Replace missing features with

baseline: Replace missing features with

baseline values (e.g., mean, zero).

Marginal: Evaluate subsets to compute

marginal effects.

Conditional: Account for featu
- marginal effects.
- $\begin{tabular}{c} \color{red} \texttt{HETU} \\ \color{red} \texttt{HETU} \\ \color{red} \texttt{Feature-Removal Approaches:} \end{tabular} \end{tabular} \vspace{-.5cm} \begin{tabular}{l} \color{red} \texttt{HETU} \\ \color{red} \texttt{HSTU} \\ \color{red} \texttt{baseline:} \end{tabular} \end{tabular} \vspace{-.5cm} \begin{tabular}{l} \color{red} \texttt{HSTU} \\ \color{red} \texttt{baseline:} \end{tabular} \end{tabular} \vspace{-.5cm} \begin{tabular}{l} \color{red} \texttt{HSTU} \\ \color{red$ Feature-Removal Approaches: [4]

• Baseline: Replace missing features with

baseline values (e.g., mean, zero).

• Marginal: Evaluate subsets to compute

marginal effects.

• Conditional: Account for feature dependencies
 ature-Removal Approaches: ^[4]
Baseline: Replace missing features with
baseline values (e.g., mean, zero).
Marginal: Evaluate subsets to compute
marginal: Evaluate subsets to compute
marginal: Account for feature de Feature-Removal Approaches: [4]

• Baseline: Replace missing features with

baseline values (e.g., mean, zero).

• Marginal: Evaluate subsets to compute

marginal effects.

• Conditional: Account for feature dependencies
 • Baseline: Replace missing features with
baseline values (e.g., mean, zero).
• Marginal: Evaluate subsets to compute
marginal effects.
• Conditional: Account for feature dependencies
via conditional expectations.
Efficie Baseline values (e.g., mean, zero).
 Marginal: Evaluate subsets to compute

marginal: Evaluate subsets to compute

marginal effects.
 Conditional: Account for feature dependencies

via conditional expectations.
 Exa marginal effects.

• **Conditional:** Account for feature dependencies

via conditional expectations.
 Efficient Computation:

• **KernelSHAP**^[3]: Model-agnostic; broadly

applicable.

• **TreeSHAP**^[5]: Model-specific; o • Conditional: Account for feature dependencies
via conditional expectations.

Efficient Computation:

• KernelSHAP^[3]: Model-agnostic; broadly

applicable.

• TreeSHAP^[5]: Model-specific; optimized for

decision trees

• Feature Attribution **Efficient Computation:**

- **KernelSHAP** [3]: Model-agnostic; broadly applicable.
-
- \bullet . The contract of the co

Integrated Shapley Values

Integrated Shapley Values	
Neural Network Architecture & Methodology	
$g = arg min E \left[(y - g_0(x))^2 + \frac{\lambda}{2} \sum_{i=1}^{N} \left(\phi_i(x) - \hat{\phi}_i(x) \right)^2 \right]$	
How $\hat{\phi}_i(x)$ is Derived	
Utilize KernelExplainer to compute real Shapley	
Utilize KernelExplainer to compute real Shapley	
Values $\phi_i(x)$ during training.	
Learning Approximation:	Low λ Values:
1: Priorities prediction accuracy and Shapley value attributes.	
1: Proritizes prediction accuracy.	
2: Proritizes prediction accuracy.	
3: Prortives prediction accuracy.	
4: NonUCiss	
5: Prortizes prediction accuracy.	
6: NonUCiss	
7: Prortizes prediction accuracy.	
8: NonCiss	
9: A balances the emphasis between prediction accuracy and Shapley value attention.	
1: NonUCiss	
1: Prortizes prediction error with minimal emphasis	
1: NonUCiss	
2: Prortizes prediction error with minimal emphasis	
3: An output	
4: Learning to predict $\hat{\phi}_i(x)$ by minimizing the difference between $\phi_i(x)$ and $\hat{\phi}_i(x)$	
5: Enances Shapley value precision and explainability loss, improving feature distribution accuracy.	

How $\overline{\boldsymbol{\phi}}_i(x)$ is Derived

values $\phi_i(x)$ during training.

Learning Approximation:

- The model integrates Shapley approximations \cdot as an output
- Learning to predict $\hat{\phi}_i(x)$ by minimizing the difference between $\phi_i(x)$ and $\hat{\phi}_i(x)$

Mechanism of λ

λ balances the emphasis between prediction accuracy and Shapley value attributions.

Low λ Values:

- Prioritizes prediction accuracy.
- Minimizes prediction error with minimal emphasis on Shapley values.

High λ Values:

- $\mathcal{L}_i(x)$ external term on the number of the precision and explainability.
	- Increases the weight of explainability loss, improving feature attribution accuracy.

FREAL-World Data (FREAD ACT)
 Architecture and Training

Input Layer: 3 nodes (one for each feature).

Hidden Layers:

• Layer 1: 16 neurons, Leaky ReLU activation.

• Layer 2: 8 neurons, Leaky ReLU activation.
 Outp Results from Synthetic and Real-World Datament HFU

Experimental Design to Evaluate Shapley Integration

Experimental Setup

Objective: Demonstrate the impact of embedding
Shapley values on accuracy and interpretability by
varying the λ parameter. **Experimental Setup**
 Chapter Conduces on accuracy and interpretability by

Synthetic Dataset:

• Created to observe trade-offs between prediction

• Created to observe trade-offs between prediction

• Created to observ

Synthetic Dataset:

- Created to observe trade-offs between prediction accuracy and explainability.
- Includes controlled linear and complex feature relationships.

Real-World Dataset (Wine Quality):

-
-

Architecture and Training

Input Layer: 3 nodes (one for each feature).

Hidden Layers:

-
-

Output Layer:

- 1 Target Prediction ν
- 3 Shapley Value Approximations $(\phi^1(x),\phi^2(x),\phi^3(x))$

Training Configurations:

- $(x), \phi^2(x), \phi^3(x)$
phasis on Shapley $(x), \phi^3(x))$
on Shapley \cdot λ = 0: Accuracy-focused, with minimal emphasis on Shapley values.
- λ = 1: Balanced, with equal weight on prediction accuracy and explainability.
- λ = 1000: Shapley-focused, prioritizing interpretability over prediction accuracy.

Experiment I.

corresponding Shapley values (green, red, orange).

Experiment I.

Synthetic Dataset

Pregion: Learning Curves with MSE for

Synthetic Dataset

Design:

Target $y = 2 \cdot x_1 + \frac{1}{2}e$ where x_1 is the

main feature with noise ϵ .
 $\therefore x_2$: Independent, however, non-linea -1 $\frac{1}{2} \epsilon$ where x_1 is the $\frac{1}{2} \epsilon \frac{1}{2} \frac{1}{$ -0.5 -2 . 0.0 0.4 0.6 0.8 1.0 0.6 0.8 0.2 1.0 1.2 0.5 Ω -1 0.0 0.0 -2 -0.5 1.0 0.0 0.4 0.6 0.8 0.0 0.2 0.4 0.6 0.8 1.0 0.6 0.8 1.0 1.2 0.1 0.05 0.5 0.0 -0.1 0.00 -0.2 0.05 -0.3 0.0 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.6 0.8 1.2 $0₂$ 1.0

SHAP values for y=A vs feature
Figure: Shapley values of features (left to right) of models $\lambda \in 0.1,100$ (top to bottom).

Synthetic Dataset

Design:

- $\frac{1}{2}$ subsequently is the \sim main feature with noise ϵ .
- x_2 : Independent, however, non-linear transformation of x_1 and y .
- x_3 : Independent, uniformly distributed. $\begin{bmatrix} 1 & 0.2 \\ 0 & 0.2 \end{bmatrix}$

Findings:

- Higer λ :
	- Correct attributions, improving
explainability.
• Reduces MSE for Shapley values. explainability.
	- Reduces MSE for Shapley values. $\sum_{-0.5}^{11}$
- Trade-off in prediction accuracy vs. interpretability

Experiment II.

Figure: Learning Curves with MSE for $\lambda \in \{0.1, 1000\}$ models (left to right) for the outcome of interest y (blue) and the corresponding Shapley values (green, red, orange).

Wine Quality Dataset

Data Source:

• Wine-quality-red dataset from $\frac{1}{8}$ $\frac{0.5}{0.0}$ OpenML [6]. .

Features Used:

• 'sulphates,' 'alcohol,' and 'total
sulfur dioxide' chosen by
 $\frac{1}{6}$ $\frac{1}{6}$ $\frac{1}{6}$ sulfur dioxide' chosen by explorative analysis $\sum_{n=1}^{\infty}$

Findings:

• Partial dependency plots reveal
more stable Shapley values at
higher λ more stable Shapley values at higher λ

Figure: Shapley values of features (left to right) of models $\lambda \in 0.1,1000$ (top to bottom)

Conclusion

- Embedding Shapley values aligns feature attributions to fair principles during training.
- Adjusting λ enables a flexible tradeoff between accuracy and interpretability.
- Both synthetic and real-world experiments show that increasing λ enhances explainability.

Future Research Directions

- Change approach to align feature attributions to improve scalability.
- Extending experiments to complex architectures and broader data sets could expand application potential.
- Evaluating performanceinterpretability trade-off.

Questions? Valentin Göttisheim – Valentin.Gottisheim@hs-furtwangen.de

References

- References

1. L. Shapley, "Notes on the n-Person Game -- II: The Value

of an n-Person Game.", Santa Monica, Calif.: RAND

Corporation, 1951.

2. L. Merrick and A. Taly, "The Explanation Game: 691, [retrieved: 10, 2024]. **CEFEIT CES**

L. Shapley, "Notes on the n-Person Game. -- II: The Value for trees", *Nature Machine Intelligence 2*, pp.

of an n-Person Game.", Santa Monica, Calif.: RAND

Corporation, 1951.

L. Merrick and A. Taly, "The
- **CFEFENCES**

L. Shapley, "Notes on the n-Person Game -- II: The Value

of an n-Person Game.", Santa Monica, Calif.: RAND

Corporation, 1951.

L. Merrick and A. Taly, "The Explanation Game: "https:/

Explaining Machine Lear **References**

2. L. Shapley, "Notes on the n-Person Game -- II: The Value for trees", *Nature Machine Intelligence 2, pp.*

2. Merrick and A. Taly, "The Explanation Game: A. Copposition, 1951.

2. L. Merrick and A. Taly, " **CECERCOS**

L. Shapley, "Notes on the n-Person Game -- II: The Value for trees", *Nature Machine Intelligence 2*, pp

of an n-Person Game.", Santa Monica, Calif.: RAND

Corporation, 1951.

L. Merrick and A. Taly, "The Expl **L.** Shapley, "Notes on the n-Person Game -- II: The Value for trees", *Nature Machine Intelligence 2*, pp. 56 of an n-Person Game.", Santa Monica, Calif.: RAND .
Corporation, 1951.
L. Merrick and A. Taly, "The Explanation **L.** Shapley, "Notes on the n-Person Game -- II: The Value

I. Shapley, "Notes on the n-Person Game -- II: The Value

Corporation, 1951.

Corporation, 1951.

L. Merrick and A. Taly, "The Explanation Game: "

Explaining Mac **References**

3. L. Shapley, "Notes on the n-Person Game -- II: The Value for trees", *Nature Machine Intelligence* 2, pp. 56-6

5. The Corporation, 1951.

2. L. Merrick and A. Taly, "The Explanation Game: "A Units."/openM **L. Shapley, "Notes on the n-Person Game -- II:** The Value for trees", *Nature Machine Intelligence 2*, pp.

of an n-Person Game.", Santa Monica, Calif.: RAND

Corporation, 1951.

L. Merrick and A. Taly, "The Explanation G I. Shapley, "Notes on the n-Person Game -- II: The Value for trees", *Nature Machine Intelligence 2*, of an n-Person Game.", Santa Monica, Calif.: RAND Corporation, 1951. Merrick and A. Taly, "The Explanation Game: by Open 1. L. Shapley, "Notes on the n-Person Game -- II: The Value for trees", *Nature Machine Intelligence* 2, pp. 56–6 of an n-Person Game.", Santa Monica, Calif.: RAND copenML, "Red Wine Quality Dataset", the control. 1951.

2 E. Shapley, "Notes on the n-Person Game -- II: The Value

of an n-Person Game.", Santa Monica, Calif.: RAND

Corporation, 1951.

L. Merrick and A. Taly, "The Explanation Game: 691 , [retrieved: 10, 2024].

Explaining Mach L. Shapley, "Notes on the n-Person Game -- II: The Value for trees", *Nature Machine Inte*
of an n-Person Game.", Santa Monica, Calif.: RAND Corporation, 1951.

L. Merrick and A. Taly, "The Explanation Game: 091, [retrieve 1. L. Snappy, Notes on the Treetson Game -- II: Ine value for trees , *Nuture Machine Interligence 2*, pp. 31

of an n-Person Game.", Santa Monica, Calif: RAND

Corporation, 1951.

1. Merrick and A. Taly, "The Explanation of an Freeson Game. , santa Mondea, Cam.: KAND

Corporation, 1951.

L. Merrick and A. Taly, "The Explanation Game: https://openml.org/search?type=data&status=active

Explaining Machine Learning Models Using Shapley

Values
-
-
-

for trees", *Nature Machine Intelligence 2*, pp. 56–67, 2020.
OpenML, "Red Wine Quality Dataset. Dataset", [Online]
https://openml.org/search?type=data&status=active&id=40
691, [retrieved: 10, 2024]. for trees", *Nature Machine Intelligence 2*, pp. 56–67, 2020.

6. OpenML, "Red Wine Quality Dataset. Dataset", [Online]

https://openml.org/search?type=data&status=active&id=40

691, [retrieved: 10, 2024]. https://openml.org/search?type=data&status=active&id=40 for trees", *Nature Machine Intelligence 2*, pp. 56–67, 2020.
OpenML, "Red Wine Quality Dataset. Dataset", [Online]
https://openml.org/search?type=data&status=active&id=40
691, [retrieved: 10, 2024].

Backup: House Price Prediction Example

Model Prediction: \$440,000

- 1.Square Footage (120m²): \$120,000
-
- 3.Bedrooms (4): \$120,000
- 4.Proximity to Park (100m): \$0

- 1.Efficiency: All features
- 2.Symmetry: Square Footage and Location

…

3.Dummy: Proximity to Park

Efficiency: Total contribution equals the model's prediction.

2. Location (Valencia): \$200,000 $+ \phi_{proximity\ to\ Park}$
= 120.000 + 200.000 + 120.000 + 0 = 440.000 ϕ Square Footage + ϕ Location + ϕ Bedrooms $+$ ϕ *Proximity to Park* **ion Example**
 ion:
 ion:
 p
 ion:
 p
 o
 ion:
 p
 ion:
 i
 p
 i
 p
 ion:
 ion:

Symmetry: Features with equal contributions receive equal attribution.

Assumptions of Fair Attribution: $f(Location \cup Square Footage) - f(Location) = 120,000$ **Criticiency:** Total contribution equals the model's

Dependence of the model of the model of the syntax = 120,000 + 200,000 + 120,000 + 0 = 440,000

Symmetry: Features with equal contributions

eceive equal attribution.
 LOTT LAATITPLE
 Lecation:
 $\phi_{Square\cdot Footage} + \phi_{Location} + \phi_{Bedrooms} + \phi_{Proximity\cdot to Park} + \phi_{Proximity\cdot to Park}$

= 120,000 + 200,000 + 120,000 + 0 = 440,000
 mmetry: Features with equal contributions
 Location ∪ *Square Footage*) – $f(Location) = 120,000$
 f **ency:** Total contribution equals the model's

tion.
 $\frac{\partial Square \cdot F} {\partial x} = \frac{\partial S}{\partial x} + \frac{\partial S}{\partial y}$
 $\frac{\partial S}{\partial y} = \frac{\partial S}{\partial x} + \frac{\partial S}{\partial y}$
 $\frac{\partial S}{\partial x} = \frac{\partial S}{\partial y} + \frac{\partial S}{\partial y}$
 $\frac{\partial S}{\partial y} = \frac{\partial S}{\partial x}$
 $\frac{\partial S}{\partial y} = \frac{\partial S}{\partial y}$
 $\frac{\partial$ rediction.
 $\phi_{Square\cdot Footage} + \phi_{Location} + \phi_{Bedrooms}$
 $+ \phi_{Proximity\, to \, Park}$

= 120,000 + 200,000 + 120,000 + 0 = 440,000
 ymmetry: Features with equal contributions

secive equal attribution.
 $\mathcal{E}(Location \cup Square\, Footage) - \mathcal{E}(Location) = 120,000$
 $\mathcal{E}(Location \cup Bed$ botage + Φ Location + Φ Bedrooms
+ Φ Proximity to Park
- 200,000 + 120,000 + 0 = 440,000
atures with equal contributions
ttribution.
uare Footage) - f (Location) = 120,000
Bedrooms) - f (Location) = 120,000
r

Dummy: Features with no impact receive zero attribution.

17