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Goal and contributions

Goal:
Assess the suitability of transformers in time series 
forecasting tasks by investigating what time dependencies 
they can learn.

Contributions:

We propose methodology to analyze time dependencies 
learned by transformers based on Shapley additive 
explanations.

We investigate a variety of aggregation strategies with the 
input time series to visualize these time dependencies.

We find the transformer is unable to learn long-term time 
dependencies and just looks at the very end of the input 
sequence.
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• Time series forecasting (LTSF) problems play a major role in many 
research [1] and applied domains [2 – 5]:
– Climate, healthcare, biology, economics, physics…

• Solving with deep learning means giving 

     up interpreting the solutions.
– Are they working as intended?

• Many deep learning approaches:
– Multilayer perceptron [6], convolutional NNs [7].

– Recurrent [8], long short-term memory networks [9].

– Transformers [10] have gained a lot of traction [11] – [15]:
• High performance with sequential data.

• Handling of contextual information.

Introduction: time series forecasting

    

        

       



• Neural networks are black boxes:
– Not interpretable.

– We do not understand their predictions.

• XAI methods can provide this 
knowledge:
– Exploiting external [16] or internal 

elements [17], [18].

– Model agnostic [16] or model specific 
[17], [18].

• Popular XAI methods for 
transformers:
– Attribution score-based [16] – [18].

– Attention-based [19] – [21].

Concern with transformers

• Pitfall in performance:
– Simple linear autoregressive models 

(LTSF-Linear) can outperform them 
[22]:
• Compared with mean square and mean 

absolute errors.

• Designed for natural language 
processing [10]:
– Contextual information equals time 

dependencies?

– Can attention deal with long-term time 
dependencies?

• XAI can help us understand where 
they are failing.

Challenge of Deep Learning

Introduction: time series forecasting



• Currency exchange rate dataset:

– Rates of 8 countries.

– Collected between 1990 and 2016.

– Publicly available [22], [23].

– Used as time series forecasting 

benchmark of transformer-based 

models [12], [22].

– Time resolution of 1 day:
• Total of 7588 samples.

• Problem setting:

– Multivariate forecasting.

Methodology: data



• “Vanilla” transformer, commonly used in LTSF 
comparisons of transformers performance 
[12], [22]:
– Enhanced start token:

• 𝐿𝑑𝑒𝑐 = 48 (time steps).

– Includes temporal embeddings for encoder and 
decoder: 𝑋𝑒𝑚, 𝑋𝑑𝑚.

– 𝑋𝑒𝑚, 𝑋𝑑𝑚, and decoder input (𝑋𝑑) treated as regular 
model inputs, together with the input sequence 𝑋𝑒 :
• Not transparent to the user.

– Direct multi-step prediction:
• 𝑍𝑝 = 96.

– Input time series sequence length:
• 𝑍𝑖 = 96.

𝑋𝑒      𝑋𝑑

Time series prediction

𝑋𝑒𝑚  𝑋𝑑𝑚

Temporal

Embeddings

Methodology: model
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• Shapley additive explanations [16]:

• SHAP advantages:
– Strong theoretical base:

• Coalition game theory.

– Model agnostic.

– Local explanations.
• Computes attribution scores for the inputs based on how an output 

reacts to perturbing the inputs.

• We use it to extract global explanations by aggregating local ones.

– Several implementations:
• Choose the best depending on model and dataset: Deep 

implementation.

– Package SHAP available:
• Compatible with Pytorch (and Tensorflow).

• Main disadvantage found in this work:
– If the model is not supported, meeting the specifications can be a 

challenge.

Methodology: SHAP

      

Temporal

 mbeddings

[16]
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• Three levels according how locally or globally the model is 

described:

– Local:

• The 10 most important features looking at specific predicted time steps considering 

each input feature from each time step independently.

Methodology: the analysis
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• Three levels according how locally or globally the model is 

described:

– Intermediate:

• Evolution of attribution scores computed for several specific predicted time steps for all 

the input sequence features individually.

Methodology: the analysis
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• Three levels according how locally or globally the model is 

described:

– Global:

• Evolution of attribution scores for all predicted time steps and all input sequence 

features, accumulating both input scores and outputs by time step.

Methodology: the analysis



Results

• Last input time steps are 
always among the 10 most 
influential features.

• Behavior consistent in all 
the forecasted for all time 
steps, expect:

• Anomaly at 𝑍𝑝 = 95.

• No clear reason.

• Nothing of particular 
interest in the dataset.

• Completely different from 
𝑍𝑝 = 94.

• Most likely an outlier in 
prediction.

• No evident presence of 
learned long-term time 
dependencies.

𝑍𝑝 = 0 𝑍𝑝 = 48

𝑍𝑝 = 94 𝑍𝑝 = 95



• Feature importance grows as we move 
towards the last time steps of the input.

• After few first forecasted time steps, the 
impact is more distributed.
– Some input features from beginning and middle 

input time steps have observable impact.

• Most of the impact is still placed in the last 

time steps of the input sequence.

• The anomaly can be better seen:

– Input time step 𝑍𝑖 = 48 has an anomalous impact 

on 𝑍𝑝 = 95.

Results



Results

• Most of the influence is place on very 

few time steps:

• The output is mostly affected by the 

last five time steps of the input 

sequence.

• This suggest the model is unable to 

learn any long-term time dependencies.

• There are two anomalies:

• First at 𝑍𝑝 = 0:

• Just in terms of accumulated impact 

value, behavior still consistent.

• Second at 𝑍𝑝 = 95:

• The same spotted in previous figures.

• This only anomaly in behavior from 

9216 datapoints suggest an outlier in 

prediction from the side of the 

transformer.
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Conclusions and future work

• We propose a methodology to analyze transformers with SHAP in the LTSF 
domain.

• We find the transformer does not learn long-term time dependencies:

• Predictions are mostly influenced by the last elements of the input sequence.

• The transformer disregards most of the input time series in this case.

Conclusions:

• More extensive analysis on different datasets and with state-of-the-art 
transformers designed for LTSF.

• More in-depth analysis when new transformers are proposed in this domain
could be useful to detect these issues, instead of just looking at performance.

Future work:
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