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About Me

Pavel Loskot joined the ZJU-UIUC Institute as Associate Professor in January 2021. He

received his PhD degree in Wireless Communications from the University of Alberta in Canada,

and the MSc and BSc degrees in Radioelectronics and Biomedical Electronics, respectively,

from the Czech Technical University of Prague. He is the Senior Member of the IEEE, Fellow

of the HEA in the UK, and the Recognized Research Supervisor of the UKCGE.

In the past 25 years, he was involved in numerous industrial and academic collaborative

projects in the Czech Republic, Finland, Canada, the UK, Turkey, and China. These projects

concerned mainly wireless and optical telecommunication networks, but also genetic regulatory

circuits, air transport services, and renewable energy systems. This experience allowed him to

truly understand the interdisciplinary workings, and crossing the disciplines boundaries.

His current research focuses mathematical and probabilistic modeling, statistical signal

processing and classical machine learning for multi-sensor data in biomedicine, computational

molecular biology, and wireless communications.
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Objectives

• explore strategies for extracting information about complex models to
achieve their explainability

• consider specifically the methods for factorizations, decompositions, and
expansions of univariate and multivariate functions

• investigate Sobol’s decomposition of multivariate functions, which did not
receive sufficient attention it likely deserves

Outline

• Mathematical modeling

• Decompositions of multivariate functions

• Orthogonalizing inputs and outputs

• Numerical example

• Observations and future work
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Mathematical Modeling

Modeling economics

• fast and cheap explorations
→ replacing lab/field experiments

• used everywhere nowadays

• improving information gains

Model formats

• mathematical expressions
→ reproducability

• algorithms, computer simulations

• datasets

Model interpretability

• understand how outputs are obtained from inputs
→ understand the model structure

• study how parameters affect model properties
→ sensitivity analysis

• various model-related tasks:
→ calibration, optimization, selection, validation, simplification

Interpretability strategies

• local and global sensitivity

• surrogate and meta models

• output (variance) expansions
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Mathematical Modeling (cont.)

Model explainability

• narrower objective than interpretability

• which inputs more important for outputs
→ factor screening, attribution problem

• model-agnostic methods
→ permutation importance
→ dependency plots
→ SHAP explanations

Interpretability

Complexity Accuracy

MODELS

Orthogonal decomposition

M(x) = a1M1(x)+a2M2(x)+ · · · +MN(x)

• generalized Fourier series

• if components Mi(x) are mutually orthogonal
→ straightforward to find coefficients ai

→ analysis of Mi(x) can be separated
→ faster learning (convergence)
→ clear high-level structure i.e. explainability

• methods
→ Gram-Schmidt process, matrix factorizations (SVD, PCA, QR, ... )
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Decompositions of Multivariate Functions

yyy = fff (xxx) = fff (x1, . . . , xI) =
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Objectives

• uncover latent structure

• reducing computational complexity
→ divide & conquer

• provide explainability

• approximations
→ optimization and analysis

Function factorization

fff (xxx) =

n
∏

i=1

fff i(sssi), sssi ⊆ {x1, . . . , xI} (product factors)

fff (xxx) =

n
∑

i=1

fff i(sssi), sssi ⊆ {x1, . . . , xI} (sum factors)

fff (xxx)A(xxx) =

{

fff (xxx), xxx ∈ A

0, xxx <A
(adding constraints)
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Decompositions of Multivariate Functions (cont.)

Stochastic function

yyy ≈

n
∑

i=1

ai |xxx−E[xxx]|i1 [Loskot, 2021]

→ multivariate Taylor expansion

Universal approximation theorem

yyy ≈= · · · σσσ◦ (AAAi,bbbi)◦ · · ·σσσ(AAA1xxx+bbb1) [Hornik, 1989]

Kolmogorov-Arnold approximation

f (xxx) =
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[Lorentz, 1962]

Sobol’s decomposition

fff (xxx) = fff 0+

I
∑

i=1

fff i(xxxi)+

I
∑

i, j=1
i, j

fff i, j(xxxi, xxx j) · · · +

I
∑

i=1

fff {1:I}\i(xxx)
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Orthogonal Input-Output Decompositions

Main task

• analyze explainability of complex model, fff (xxx,ΩΩΩ) ≡ M(xxx;ΩΩΩ) ≡ MΩΩΩ(xxx)

Key paper contribution

fff (xxx) ≈ fff 0+

N
∑

i=1

fff i(sss(i))+

N
∑

i, j=1
i, j

fff i, j(sss(i), sss( j))

orthogonal input projections
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Numerical Example

Problem

• classifying hand-written digits in MNIST dataset

• train a MLP with two hidden layers
→ training accuracy 97.56%, testing accuracy 94.31%

Explore

1. training dataset vs. randomly generated inputs

2. orthogonal (disjoint) masking vs. random masking of inputs

MSE0 =
1

K

K
∑

k=1

‖yyy(k)‖2

MSE1 =
1

NK

N
∑

i=1

K
∑

k=1

∥

∥

∥vvv(i)(k)− yyy(k)
∥

∥

∥

2

min MSE1 = min
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1

K

K
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2

MSE2 =
1

K

K
∑
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‖ỹyy(k)− yyy(k)‖2
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Numerical Example (cont.)

→ correlations and probabilities (decisions with masks mmm(i) and mmm( j) the same

as with combined mask mmm(i)
+mmm( j)
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Observations and Conclusion

MSE values

• input masking substantially reduces accuracy in exchange for interpretability

• combining outputs corresponding to masks inputs restores some accuracy

• larger sensitivity for training vs. random inputs than for orthogonal vs.
random masks

Correlations vs. probabilities

• increasing N increases resolution and variance of calculated values

• some orthogonal inputs have dependent decisions (square patterns)

• probability patterns require sufficiently large N to be visible
→ i.e. explainability requires the minimum resolution

Summary

• Sobol-based decomposition of multivariate functions
→ graph representation of multivariate functions

• input masking
→ projections into orthogonal input subspaces

• output orthogonalization via decorrelation

• SVD of correlation matrix

• easy to obtain linear combining coefficients
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FutureWork

Some ideas

• explainability methods must be much simpler than the model investigated

• optimizing input projections (granularity vs. complexity vs. accuracy)
→ different explainability objectives

• averaging out some inputs instead of using default values (zero)

• other strategies for obtaining component models from the base model

• constructing complex models from orthogonal component models
→ machine learning architectures

• model decomposition as structural causal model
→ causal inferences

• Sobol’s decomposition
→ assuming higher-order graphs
→ approximation guarantees
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