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Aims and 
contributions 
of our paper

• Investigation of containerization’s 
power overhead while streaming video

• Development of a re-usable method 
framework

Aims

• Showed that containerized video 
service’s power overhead is low.

• Demonstrated use and limitations of 
two existing power meters

Contributions



Objective

• Quantify power use across two 
deployment scenarios:

• Containerized video streaming server.

• Native OS-based video streaming 
server.

• Trade-off: Operating power per unit 
(host) vs. potential for consolidating 
services on fewer physical hosts. 



Implementation Model: Classical form
• Video server 

runs in access 
node (AN) as 
application on 
host OS

• Active 
Ethernet 
access 
network

• Described 
using 
standardized 
reference 
points
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Implementation Model: Cloud-native form
• Video server 

runs in access 
node (AN), 
containerized

• Active 
Ethernet 
access 
network

• Described 
using 
standardized 
reference 
points
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Method: 
Instrumentation

• Two power meters, for cross-validation
• Integrated Lights-Out (iLO) Redfish-

compliant RESTful API, with 10-second 
averaging period
• Excludes measurement of fan and ac-dc 

overhead

• PowerTOP
• Dynamic power measurement only
• Hard disk drive and solid-state disk power use 

is not captured
• Mitigate by logging to RAM disk and by 

capturing static power baseline



Method: Baseline capture 

• Denote dynamic power corresponding to OS operation with 
container system software running by 𝑃𝑞

𝑜𝑠+𝑑𝑜𝑐𝑘𝑒𝑟𝑑+𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟𝑑

• Denote idle/leakage/static power at the frequency 𝑓2 at which the 
OS is quiescent by 𝑃𝑖𝑑𝑙𝑒

𝑓2

• Desired baseline is 𝑃𝑏2
(𝑣𝑖𝑑𝑒𝑜)

= 𝑃𝑖𝑑𝑙𝑒
𝑓2 + 𝑃𝑞

𝑜𝑠+𝑑𝑜𝑐𝑘𝑒𝑟𝑑+𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟𝑑

• Add this to PowerTOP and compare with iLO’s measurement



Method: Quality of 
Service (QoS)

• Measure received rate with 
fine granularity (5 s)

• Compare average of fine-
grained rate samples with 
overall average bit rate for 
video and audio.

• TSDuck used for this 
purpose.



Experimental procedure: Orchestration

Reboot video server, to 
obtain  common and 
reproducible initial 

state.

Wait until the video 
server quiesces. 

Start the power meters 
for both total and 

dynamic power, for both 
the video server and the 

virtual switch.

Wait for a fifteen-minute 
interval, to capture 

behaviour before video 
streaming.

Instantiate & start an 
Ffmpeg listener 

container1, poised for 
real-time play-back with 

randomized starting point 
& 30-minute play time.

Start a TSDuck client to 
connect to the container 
and measure the bitrate, 
averaged over 5-second 

intervals.

Once 30 minutes of 
video have been played, 

destroy the container. 

Wait for a fifteen-minute 
interval, to capture 

behaviour after video 
streaming.

Automated management using Python scripts and Ansible

Note 1. In the classical form, start the listener as a new process native to the host OS.



Experimental procedure: Concurrency

For several concurrent streams, steps 6 
and 7 must be repeated for each one of 
the additional streams. 
For the native service instance, step 5 involves the 
ffmpeg process only and there is no equivalent to step 7.

Number of concurrent instances varied 
between 1 and 80: 1, 2, 5, 10, 20, 40, 80.



Results –
Power 
Comparison
Minimal total power 
overhead in containerized 
setups

Total power during operations measured at iLO, 𝑷𝒐𝒑𝒔
𝒊𝑳𝑶 𝒏

vs number of streamers, 𝒏



Differential 
(dynamic) power

• Differential power: between 
operations and quiescence, 
𝑃𝑜𝑝𝑠
𝑖𝐿𝑂 𝑛 − 𝑃𝑞

𝑖𝐿𝑂.

• Minimal overhead in differential 
power

Differential power during operations measured at iLO
𝑷𝒐𝒑𝒔
𝒊𝑳𝑶 𝒏 − 𝑷𝒒

𝒊𝑳𝑶,
vs number of streamers, 𝒏



PowerTOP’s accuracy (1)
Absolute error grows with average power use

2 instances 5 instances



PowerTOP’s accuracy (2)

20 instances 40 instances



Conclusion

Containerization poses minimal 
overhead for video edge caches 
Energy-efficient for scalable deployment.

Scope for future work: Calibration of 
PowerTOP for greater accuracy.


	Slide 1: Containerization’s Power Use Overhead in Video Streaming  Authors: E.V. Depasquale1,2, S. Zammit1
	Slide 2: Etienne-Victor Depasquale
	Slide 3: Aims and contributions of our paper
	Slide 4: Objective
	Slide 5: Implementation Model: Classical form
	Slide 6: Implementation Model: Cloud-native form
	Slide 7: Method: Instrumentation
	Slide 8: Method: Baseline capture 
	Slide 9: Method: Quality of Service (QoS)
	Slide 10: Experimental procedure: Orchestration
	Slide 11: Experimental procedure: Concurrency
	Slide 12: Results – Power Comparison
	Slide 13: Differential (dynamic) power
	Slide 14: PowerTOP’s accuracy (1)
	Slide 15: PowerTOP’s accuracy (2)
	Slide 16: Conclusion

