
Containerization’s Power
Use Overhead in Video
Streaming

Authors: E.V. Depasquale1,2, S. Zammit1

1 Department of Communications and Computer
Engineering, University of Malta
2 Contact email: edepa@ieee.org

Etienne-Victor Depasquale

Etienne-Victor Depasquale is an experienced
network engineer and systems integrator with over
twenty-five years in the field. In 2015, he
transitioned into academia by joining the University
of Malta, where he completed a PhD in 2024,
focusing on standardized methods for reporting
energy consumption in telecommunications
networks.

His research interests lie at the intersection of
sustainability, computing, and communications.

Aims and
contributions
of our paper

• Investigation of containerization’s
power overhead while streaming video

• Development of a re-usable method
framework

Aims

• Showed that containerized video
service’s power overhead is low.

• Demonstrated use and limitations of
two existing power meters

Contributions

Objective

• Quantify power use across two
deployment scenarios:

• Containerized video streaming server.

• Native OS-based video streaming
server.

• Trade-off: Operating power per unit
(host) vs. potential for consolidating
services on fewer physical hosts.

Implementation Model: Classical form
• Video server

runs in access
node (AN) as
application on
host OS

• Active
Ethernet
access
network

• Described
using
standardized
reference
points

OvS

CLIENT

CONTAINERS VIRTUAL

SWITCH

Native user

applications

DIRECT POWER

MEASUREMENT

DIRECT POWER

MEASUREMENT

PowerTOP PowerTOP

U, T, R/S A10, Vc, S/R

ffmpeg-N
player-N

player-1
ffmpeg-1

VIDEO SERVER

HPE BL460c Gen9

1 x E5-2640 v3 @

2.60GHz (8 Cores)

32 GiB RAM

DVFS in firmware

Alpine Linux 3.19 std

INTERMEDIATE NODE

HPE BL460c Gen9

1 x E5-2640 v3 @

2.60GHz (8 Cores)

32 GiB RAM

Alpine Linux 3.19 std.

CONDOMINIUM

HPE BL460c Gen9

2 x E5-2609 @ 2.40GHz (4

Cores each)

32 GiB RAM

TSDuck receiver used
as video player and to
measure received
bitrate to ensure that
QoS is respected.

10GBASE-SR 10GBASE-SR

Implementation Model: Cloud-native form
• Video server

runs in access
node (AN),
containerized

• Active
Ethernet
access
network

• Described
using
standardized
reference
points

OvS

VIDEO SERVER

HPE BL460c Gen9

1 x E5-2640 v3 @

2.60GHz (8 Cores)

32 GiB RAM

DVFS in firmware

Alpine Linux 3.19 std

INTERMEDIATE NODE

HPE BL460c Gen9

1 x E5-2640 v3 @

2.60GHz (8 Cores)

32 GiB RAM

Alpine Linux 3.19 std.

CONDOMINIUM

HPE BL460c Gen9

2 x E5-2609 @ 2.40GHz (4

Cores each)

32 GiB RAM

CLIENT

CONTAINERS VIRTUAL

SWITCH

SERVICE

CONTAINERS

DIRECT POWER

MEASUREMENT

DIRECT POWER

MEASUREMENT

PowerTOP PowerTOP

U, T, R/S A10, Vc, S/R ffmpeg-N

Runtime
player-N

player-1

 ffmpeg-1

Docker

Runtime

TSDuck receiver used
as video player and to
measure received
bitrate to ensure that
QoS is respected.

10GBASE-SR 10GBASE-SR

Method:
Instrumentation

• Two power meters, for cross-validation
• Integrated Lights-Out (iLO) Redfish-

compliant RESTful API, with 10-second
averaging period
• Excludes measurement of fan and ac-dc

overhead

• PowerTOP
• Dynamic power measurement only
• Hard disk drive and solid-state disk power use

is not captured
• Mitigate by logging to RAM disk and by

capturing static power baseline

Method: Baseline capture

• Denote dynamic power corresponding to OS operation with
container system software running by 𝑃𝑞

𝑜𝑠+𝑑𝑜𝑐𝑘𝑒𝑟𝑑+𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟𝑑

• Denote idle/leakage/static power at the frequency 𝑓2 at which the
OS is quiescent by 𝑃𝑖𝑑𝑙𝑒

𝑓2

• Desired baseline is 𝑃𝑏2
(𝑣𝑖𝑑𝑒𝑜)

= 𝑃𝑖𝑑𝑙𝑒
𝑓2 + 𝑃𝑞

𝑜𝑠+𝑑𝑜𝑐𝑘𝑒𝑟𝑑+𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟𝑑

• Add this to PowerTOP and compare with iLO’s measurement

Method: Quality of
Service (QoS)

• Measure received rate with
fine granularity (5 s)

• Compare average of fine-
grained rate samples with
overall average bit rate for
video and audio.

• TSDuck used for this
purpose.

Experimental procedure: Orchestration

Reboot video server, to
obtain common and
reproducible initial

state.

Wait until the video
server quiesces.

Start the power meters
for both total and

dynamic power, for both
the video server and the

virtual switch.

Wait for a fifteen-minute
interval, to capture

behaviour before video
streaming.

Instantiate & start an
Ffmpeg listener

container1, poised for
real-time play-back with

randomized starting point
& 30-minute play time.

Start a TSDuck client to
connect to the container
and measure the bitrate,
averaged over 5-second

intervals.

Once 30 minutes of
video have been played,

destroy the container.

Wait for a fifteen-minute
interval, to capture

behaviour after video
streaming.

Automated management using Python scripts and Ansible

Note 1. In the classical form, start the listener as a new process native to the host OS.

Experimental procedure: Concurrency

For several concurrent streams, steps 6
and 7 must be repeated for each one of
the additional streams.
For the native service instance, step 5 involves the
ffmpeg process only and there is no equivalent to step 7.

Number of concurrent instances varied
between 1 and 80: 1, 2, 5, 10, 20, 40, 80.

Results –
Power
Comparison
Minimal total power
overhead in containerized
setups

Total power during operations measured at iLO, 𝑷𝒐𝒑𝒔
𝒊𝑳𝑶 𝒏

vs number of streamers, 𝒏

Differential
(dynamic) power

• Differential power: between
operations and quiescence,
𝑃𝑜𝑝𝑠
𝑖𝐿𝑂 𝑛 − 𝑃𝑞

𝑖𝐿𝑂.

• Minimal overhead in differential
power

Differential power during operations measured at iLO
𝑷𝒐𝒑𝒔
𝒊𝑳𝑶 𝒏 − 𝑷𝒒

𝒊𝑳𝑶,
vs number of streamers, 𝒏

PowerTOP’s accuracy (1)
Absolute error grows with average power use

2 instances 5 instances

PowerTOP’s accuracy (2)

20 instances 40 instances

Conclusion

Containerization poses minimal
overhead for video edge caches
Energy-efficient for scalable deployment.

Scope for future work: Calibration of
PowerTOP for greater accuracy.

	Slide 1: Containerization’s Power Use Overhead in Video Streaming Authors: E.V. Depasquale1,2, S. Zammit1
	Slide 2: Etienne-Victor Depasquale
	Slide 3: Aims and contributions of our paper
	Slide 4: Objective
	Slide 5: Implementation Model: Classical form
	Slide 6: Implementation Model: Cloud-native form
	Slide 7: Method: Instrumentation
	Slide 8: Method: Baseline capture
	Slide 9: Method: Quality of Service (QoS)
	Slide 10: Experimental procedure: Orchestration
	Slide 11: Experimental procedure: Concurrency
	Slide 12: Results – Power Comparison
	Slide 13: Differential (dynamic) power
	Slide 14: PowerTOP’s accuracy (1)
	Slide 15: PowerTOP’s accuracy (2)
	Slide 16: Conclusion

