Does Complexity Pay Off? Applying Advanced Algorithms to Depression Detection on the GLOBEM Dataset

Sebastian Cavada, Yevheniia Kryklyvets, Alvaro Cabrera

MBZUAI

November 2, 2024

Krvk	vvets.	Cabrera.	. Cavada

Image: A matching of the second se

Sebastian Cavada received his bachelor's degree in Computer Science in 2023 from the Free University of Bolzano, Italy. He is currently a master's student specializing in Computer Vision at MBZUAI, Abu Dhabi. His research interests span the application of AI for societal wellbeing, with a focus on health, and advanced 3D reconstruction techniques.

(日) (四) (日) (日) (日)

Aim and Contribution of the paper

Extending the GLOBEM platform with 4 different families of SOTA algorithms in multivariate time-series prediction

- TSMixer Chen et al. (2023) (All-MLP) to test how ALL-MLP generalizes
- CrossFormer Zhang and Yan (2023) (Transformer based) to Study how mixing the features and time dimensions perform
- CNN+LSTM Widiputra et al. (2021) (Recurrent-based network) to Study the impact of memory on the overall performances
- GRU Chung et al. (2014) (Gated recurrent unit) analyzes the effect of reduced parameter complexity while retaining memory capabilities
- Introduce a novel algorithm to improve on the original best-performing model
- In-depth analysis of the adapted algorithms and their performance on the GLOBEM dataset

イロト イボト イヨト イヨト

GLOBEM Datasets, Xu et al. (2023)

Table 1: Comparison of Related Sensor-based Human Behavior Datasets and Research Studies

	GLOBEM Dataset	StudentLife [4]	CrossCheck [12]	En-Gage [41]	Related Research [20, 97, 101]	Other Human Behavior Datasets WOODS [37]
# of Subjects	705 (497 unique)	48	34	29	<400	9
Time Scale	3 months×4 years	10 weeks	2 years	4 weeks	Months	Hours×36 devices
Open-source	Yes	Yes	Yes	Yes	No	Yes
Domain Generalization	Yes	No	No	No	No	Yes

2

4/12

イロン イ団 とく ヨン イヨン

Reorder algorithm

2

5/12

イロト イヨト イヨト イヨト

Experimental results

2

メロト メロト メヨト メヨト

Full results

Model	Number of Parameters*	Results		
		Single Dataset	Leave one out	Pre/Post Covid
Reorder + CNN-LSTM	32,138	0.629 ± 0.045	0.542 ± 0.009	0.530 ± 0.001
Reorder	10,162	0.626 ± 0.063	0.548 ± 0.030	0.513 ± 0.009
CNN-LSTM	24,378	0.601 ± 0.026	0.513 ± 0.009	0.507 ± 0.004
GRU	62,226	0.591 ± 0.034	0.516 ± 0.011	0.502 ± 0.001
Crossformer	131,527	0.590 ± 0.001	0.503 ± 0.003	0.516 ± 0.002
ERM-Transformer	12,354	0.584 ± 0.013	0.509 ± 0.008	0.512 ± 0.016
IRM	2,698	0.573 ± 0.016	0.506 ± 0.006	0.499 ± 0.000
ERM-1dCNN	2,698	0.568 ± 0.006	0.510 ± 0.008	0.514 ± 0.006
ERM-Mixup	2,698	0.568 ± 0.006	0.501 ± 0.008	0.507 ± 0.004
ERM-LSTM	22,186	0.565 ± 0.019	0.512 ± 0.006	0.512 ± 0.003
TSMixer	43,429	0.543 ± 0.035	0.521 ± 0.006	0.499 ± 0.000
CSD-D	2,839	0.562 ± 0.022	0.521 ± 0.002	0.512 ± 0.006
Siamese Network	2,664	0.545 ± 0.025	0.509 ± 0.010	0.515 ± 0.002
CSD-P	2,875	0.542 ± 0.010	0.511 ± 0.006	0.516 ± 0.000
ERM-2dCNN	12,994	0.533 ± 0.013	0.510 ± 0.006	0.504 ± 0.006
DANN-D	3,281	0.526 ± 0.016	0.514 ± 0.004	0.514 ± 0.000
MLDG-D	2,698	0.522 ± 0.013	0.511 ± 0.006	0.495 ± 0.004
MLDG-P	2,698	0.508 ± 0.011	0.510 ± 0.003	0.500 ± 0.003
MASF-D	2,970	0.505 ± 0.006	0.505 ± 0.001	0.504 ± 0.007
DANN-P	3,578	0.502 ± 0.002	0.500 ± 0.000	0.500 ± 0.000
MASF-P	2,970	0.495 ± 0.007	0.505 ± 0.004	0.509 ± 0.011

All results are in descending order, our methods in different colors, results are in balanced accuracy. The standard deviation is calculated on the number of runs between the datasets. * The number of parameters takes into account only trainable parameters - The comma is used to separate thousands, while the point is used for decimals.

イロト イヨト イヨト イヨト

э

Conclusion and Future Work

2

メロト メタト メヨト メヨト

Conclusion and Future Work

- Evaluated SOTA algorithms and original deep learning methods for depression detection using wearable data
- Consistently low accuracies across all methods, aligning with Xu et al. (2023)
- Data may **lack sufficiently informative features** for reliable depression detection
- Novel Reorder + CNN_LSTM algorithm showed improvements in one out of three tasks
- Baseline Reorder maintains superior computational **Pareto efficiency** with the best accuracy-to-parameter ratio
- Increased model complexity did not translate to better performance

(日) (四) (日) (日) (日)

Future Work

• Enhance Dataset:

- Incorporate additional sensor signals such as Heart Rate Variability (HRV) and Saturation of Peripheral Oxygen (SpO2)
- Utilize more granular measurements like minute-per-minute HRV

• Explore New Data Types:

- Integrate electrocardiogram (ECG) data from devices like the Apple Watch
- Leverage new sensors as they become available on emerging wearable devices

Regularization techniques

 Investigate new regularization techniques as they showed promising results with reorder.

• Broaden Research Scope:

- Analyze the impact of adding demographic information as input to enhance domain generalizability
- · Conduct studies on larger and more diverse populations to validate findings

< □ > < □ > < □ > < □ > < □ >

Thank you for your attention! Any Questions?

(日) (四) (日) (日) (日)

References

- Chen, S.-A., Li, C.-L., Yoder, N., Arik, S. O., and Pfister, T. (2023). Tsmixer: An all-mlp architecture for time series forecasting.
- Chung, J., Gulcehre, C., Cho, K., and Bengio, Y. (2014). Empirical evaluation of gated recurrent neural networks on sequence modeling.
- Widiputra, H., Mailangkay, A., and Gautama, E. (2021). Multivariate cnn-lstm model for multiple parallel financial time-series prediction. *Complexity*, 2021:14.
- Xu, X., Zhang, H., Sefidgar, Y., Ren, Y., Liu, X., Seo, W., Brown, J., Kuehn, K., Merrill, M., Nurius, P., Patel, S., Althoff, T., Morris, M. E., Riskin, E., Mankoff, J., and Dey, A. K. (2023). Globem dataset: Multi-year datasets for longitudinal human behavior modeling generalization.
- Zhang, Y. and Yan, J. (2023). Crossformer: Transformer utilizing cross-dimension dependency for multivariate time series forecasting. In *The Eleventh International Conference on Learning Representations*.

イロト イポト イヨト イヨト