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1. Introduction

One of the quantitative parameters to validate the load of exercise is the 
lower limb joint moment (joint torque). This is because muscle activity 
can be estimated from joint moments [1]. Therefore, joint moment is 
also a parameter used for diagnosis in orthopedic and rehabilitation 
clinics. 

In this study, we propose a method to easily obtain joint moments in daily 
life. If this method can be systematized, we believe that it will 
contribute to enhancing the effectiveness of exercise by quantitatively 
and visually confirming the effects of daily health care exercises by 
oneself. In other words, support for active self-healthcare can be 
realized. 

In this study, first, we will estimate the lower limb joint moments during 
the stance phase of walking exercise in a simplified manner.

[1] S. Yamamoto, 2003



1. Introduction

The conventional methods for obtaining joint moments during gait with 
high accuracy are inadequate in terms of simplicity

× to calculate by inverse dynamic theory using statistical values from 
ground reaction force data and coordinates, acceleration, and angular 
velocity of body part which measured with multiple large installed 
force plates and an optical motion capture system. 

× to calculate by inverse dynamic theory using statistical values from 
ground reaction force data and coordinates, acceleration, and angular 
velocity of body part which measured with 15 wearable inertial 
sensors[2][3][4]. 

× to use machine learning used multiple parameters simulated from 
measured data using optical motion capture systems and multiple 
inertial sensors, and further expanded the data set by data 
augmentation[5]. 

 unsuitable for use in practice.

[2] S. Kawamura, 2016
[3] H. Kotani, K. Shibata, 2018
[4] H. Kotani, K. Shibata, 2020
[5] M. Mundt, 2020



1. Introduction

Therefore, this proposal uses only one wearable inertial sensor for 
measurement when the user estimates, even if errors are introduced, 
and only actual measured data. The creation of a pre-prepared trained 
deep learning model requires a high degree of accuracy, so force plates 
and optical motion capture system must be used, but again, only 
calculated values from actual measured data are used. 

In the future, estimation using only users smartphone is a feasible method. 
This will lead to help effective active self-health care. 

In this presentation, 

• the proposed method is  described. 

• the estimation accuracy is verified. 

→ to consider whether it is possible to incorporate easy observation of 
joint moments into daily life. 



＜Training and Validation data＞
• Single-axis acceleration data
• Hip joint moment data

• Single-axis acceleration data
• Knee joint moment data

• Single-axis acceleration data
• Ankle joint moment data
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• Single-axis acceleration data

LSTM

LSTM

LSTM

Knee
joint

moment

Hip
joint

moment

Training and Validation

Estimation

2. Method

Outline of the proposed method



• Devices

• Three FPs (one TF-6090 and two TF-4060, Tec Gihan); for  acquiring three-dimensional 
ground reaction forces 

• Motion Capture (MC, MAC3D, Motion Analysis) ; for  acquiring 29 three-dimensional 
coordinate positions

As training/validation data and test data.

• 4 Inertial sensors (MTw2,Movella), they are wireless 3-axis sensor; For acquiring 
acceleration data  <Nevertheless, estimation is based on a single-axis acceleration of a 
single sensor.>

• Software

As training/validation data and correct values.

• Inverse dynamics analysis software (KinTools RT, Motion Analysis); For deriving the lower 
limb joint moments

• For each subject, 50 trials of 10 steps of natural walking are measured.

• The sampling frequency is 100[Hz], and the cutoff frequency of the low pass filter for smoothing 
is 9[Hz]. 

• This experiment is approved by the Kochi University of Technology Ethics Review Committee. 

2. Method

Wearing position of 
inertial sensors.

Walking experiments and data processing
• Two healthy Japanese male subjects (age 22±0 years, height 1.66±0.07 

[m], weight 74.0±12.7 [kg]).



2. Method

Target period: The stance phase of the left leg in a steady gait

Double
support
phase

（ Determined by ground and release times based on the vertical 
ground reaction force values output from the force plate.）

One gait cycle（2steps）

Double
support
phase

Single
support
phase



2. Method

50 trials of single-axis acceleration measurement 
data and joint moment calculation data.

Training
data
(41trials)

Validation
data
(1trial)

Test data/
Correct values
(9trials)



2. Method

Prior comparative experiments have shown that the 
learning algorithm for deep learning is LSTM. 

Learning conditions

Number of hidden layers 50
Number of epochs 50
Batch size 32
Learning rate 0.001
Appropriate 
values

Sub. A 65
Sub. B 62



3. Results

Prior estimation experiments were carried out and 
then the dorsal foot acceleration in the walking 
direction was selected from 4 inertial sensors x 3 
axes = 12 acceleration data as a single-axis 
acceleration which is used AI data. 

This is because a balanced and high estimation 
accuracy was obtained for all three lower limb 
joint moments in subject A. 



3. Results

Estimation results on Individual learning using the 
dorsal foot acceleration in the walking direction

Subject CSa Joint moment Correlation coefficient MAE [Nm]
A World Hip 0.948±0.0066 4.47±0.375

Knee 0.972±0.0020 3.53±0.253
Ankle 0.985±0.0055 3.82±0.665

Local Hip 0.946±0.0035 4.53±0.313
Knee 0.969±0.0038 3.97±0.541
Ankle 0.987±0.0044 3.85±0.505

B World Hip 0.943±0.0006 6.88±0.205
Knee 0.948±0.0032 4.76±0.296
Ankle 0.975±0.0064 7.48±0.821

Local Hip 0.938±0.0090 7.70±0.798
Knee 0.939±0.0084 5.23±0.538
Ankle 0.975±0.0050 9.44±1.225

a. Coordinate System



3. Results  :Ankle joint moment

Estimated (World CS and Local CS) and measured 
(Correct) ankle joint moments for subject A.

This was generally the highest correlation coefficient 
among all the estimations (From Table II).
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3. Results  :Hip joint moment

Estimated (World CS and Local CS) and measured 
(Correct) hip joint moments for subject B.

This was generally the lowest correlation coefficient 
among all the estimations (From Table II).

Nine trials One trial
Single

support
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Double
support
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3. Results  :Consideration1

The correlation coefficients between the correct and 
estimated values are all above 0.9, indicating the presence 
of a relatively strong positive correlation. 

The mean value of MAE is 7.4% of the mean body mass, 
which is small, and the standard deviation is 0.74%, which 
is also small. In other words, the results for nine trials were 
highly accurate. 



3. Results  :Consideration2
For one trial, the result for the single support phase is generally consistent, but 

there are steady-state errors and errors that do not follow minor changes in 
the double support phase. 

As the double support phase in one gait cycle is short and the ankle joint moments 
vary gently, so errors in the double support phase are not a problem. 

However, for the hip joint moments, the failure to capture the peak values in the 
initial double support phase may have implications. 

This is because, joint moments can be used to represent muscle activity, with the 
peak value representing the maximum load on the joint.

Therefore, two sources of error and suggestions for improvement are listed below. 

The first is that most of the stance phase is during the single support phase, and 
there are no large moment fluctuations during this phase at any joint, so the 
number of input data determined from the overall correlation coefficient was 
biased toward the larger values. We believe that changing the evaluation index 
and changing the number of input data to a size small enough to capture the 
fine variation in the double support phase will lead to a reduction in errors. 

Second, because only the stance phase was extracted and combined, there were 
discontinuities at the trial junctions. We believe that by setting the estimation 
range to one gait cycle that includes not only the stance phase but also the 
swing phase, in which the moment is zero, continuity will be maintained and 
errors will be reduced. 



3. Results  :Consideration3

Both the correlation coefficient and MAE are slightly less 
accurate for subject B than for subject A. 

This is due to the fact that the hyperparameters were set and 
the sensor mounting positions were determined using 
data from subject A. 

In addition, early stopping was not used in the present study. 

Therefore, there is a possibility of overfitting in the learning of 
both subjects, especially in subject B. 

Optimization of hyperparameters and sensor position, in 
addition to incorporation of early stopping into individual 
learning for subject B would have yielded better results. 

However, the results for subject B also showed good results, 
which means that even if the parameters were optimized 
for other subjects to save time and effort, good results 
could be obtained with a healthy gait. 



3. Results  :Consideration4

Comparing the results in the world coordinate system with 
those in the local coordinate system, there is no significant 
difference. 

Therefore, this study adopts estimation using a local 
coordinate system, which requires only one sensor for 
measurement and no coordinate transformation during 
estimation. 



4. Conclusion

This study examines a convenient method for estimating quantitative 
parameters useful for self-healthcare. 

Therefore, in this paper, the three lower limb joint moments were 
considered as effective parameters, and a convenient method was 
proposed to estimate them using trained LSTM model by measuring 
only the actual single-axis acceleration data. 

As its acceleration data, we decided to use the dorsal foot acceleration in 
the walking direction, which provided high estimation results for all 
three joint moments simultaneously.  

From the estimation results of individual learning for each of the two 
subjects, although some errors remained during the double support 
phase, the overall estimation in each of the two subjects was highly 
accurate, regardless of whether a world or local coordinate system was 
used for the acceleration data. 

Thus, it is expected to be possible to verify the effect of exercise by 
simply installing a small and lightweight acceleration sensor during 
daily walking exercise, without restrictions on time and place. 



4. Conclusion

In the future, 

• the generalization performance will be evaluated with an increased 
number of subjects in order to improve the practical relevance of this 
study. 

• it will apply the proposed method to other gaits. 


	既定のセクション
	スライド 1: AI-based Estimation of Lower Limb Joint Moments in Stance Phase using a Single Wearable Inertial Sensor
	スライド 2: Presenter’s short resume

	1.
	スライド 3: 1. Introduction
	スライド 4: 1. Introduction
	スライド 5: 1. Introduction

	2.
	スライド 6: 2. Method
	スライド 7: 2. Method
	スライド 8: 2. Method
	スライド 9: 2. Method
	スライド 10: 2. Method

	3．
	スライド 11: 3. Results
	スライド 12: 3. Results
	スライド 13: 3. Results  :Ankle joint moment
	スライド 14: 3. Results  :Hip joint moment
	スライド 15: 3. Results  :Consideration1
	スライド 16: 3. Results  :Consideration2
	スライド 17: 3. Results  :Consideration3
	スライド 18: 3. Results  :Consideration4

	4.
	スライド 19: 4. Conclusion
	スライド 20: 4. Conclusion


