

- Al-aided Medical Image Diagnosis
 - "Small-data" deep learning
 - Small-data deep learning application to rare cancer
- AI/Deep-Learning Imaging
 - Bone suppression in chest radiographs
 - Radiation dose reduction in CT and Tomosynthesis

Computer-Aided Diagnosis (CAD)¹⁻⁵⁾ ➤ Al-aided Diagnosis "Al Doctor"

- 1) Doi K et al., Eur J Radiology (1999) 2) Giger ML & Suzuki K, *Biomed Info Tech* (2007)

- 3) Suzuki K, Machine Learning in CAD (2012)
 4) Chang JZ et al., Nature (2016)
 5) Chen Y & Suzuki K, AI in Decision Support Systems (2018)

Is it possible to develop a deep-learning model that does not require 100,000 cases or transfer learning?

1) N Tajbakhsh & K Suzuki. Pattern Recognition (2016)

Liver Cancer Segmentation World Competition

Top 5 deep-learning models in MICCAI 2017 competition (LiTS)

Ranking	Researchers	Institution	Dice coefficient	# of training tumors	# of training patients
1	Tian et al.	Lenovo	0.70	908	131
2	Li et al.	CUHK	0.69	908	131
3	Chlebus et al.	Fraunhofer	0.68	908	131
4	Vorontsov et al.	MILA	0.66	908	131
5	Yuan et al.	MSSM	0.66	908	131

Used about 900 tumors for training a deep learning model

Comparison with the top 5 deep-learning models in MICCAI 2017 worldwide competition								
Ranking	Team	Institution	Dice coefficient	# of training tumors		# of training patients		
1	Tian et al.	Lenovo	0.70	908		131		
2	Li et al.	CUHK	0.69	908		131		
3	Chlebus et al.	Fraunhofer	0.68	908		131		
4	Vorontsov et al.	0.66	908	1/65	131			
5	Yuan et al.	MSSM	0.66	908		131		
Our MTANN Model 1			0.69	7		7		
Ou	MTANN Mod	0.70	14		12			

Comparisons with the State-of-the-Art Models

Sato M, Jin Z, Suzuki K: ECR 2021

Advantages of MTANN Over Other Deep Learning Models									
 Small MTA Low c half Easy of the second secon	required nu ANN was train omputation an hour to tra design of th to design the to design the in training ing is very sta	umber of training and with as small and cost ain, 1 sec. to exect the architecture e architecture and able, robust again	ng samples as 6 cases cute on GPU d stable nst parameter c	hanges					
	Required # of training samples Training time Performance								
	MTANN	10~100	< 10 min.	Higher					
	Other DL 5k~10k a dozen hours Medium ~ to several days High								

Virtual Deep-Learning/AI Imaging

- 1. Separation of Ribs from Soft Tissue in Chest Radiographs by Using MTANN
- 2. Radiation dose reduction in CT and mammography by Using MTANN

1-6) Suzuki et al. *IEEE Trans Med Imag* (IF:10.0) (2006), Oda et al. *AJR* (IF:4.0) (2009), Chen et al. *Med Phys* (IF:4.1) (2011), Chen et al. *IEEE Trans Med Imag* (IF:10.0) (2014), Chen et al. *Phys in Med & Biol* (IF:3.6) (2016), Zarshena et al. *Med Phys* (IF:4.1) (2019)

Motivation

 In one study¹⁾, more than 80% of the missed lung cancers by radiologists in CXR were partly obscured by overlying bones.

39

1) Austin et al. Radiology (1992)

Rib Suppression by MTANN

Original chest image

MTANN soft-tissue image

Comparison with Dual-Energy Soft-Tissue Image

MTANN soft-tissue image

"Gold-standard" dual-energy soft-tissue image

Results for Cancer Cases

51

Improved Conspicuity of Nodule with MTANN

Original chest image with nodule Our MTANN soft-tissue image

Chen S, Suzuki K. IEEE TMI 2014

		Pi	ess	Cove	rage				
AuntM	nnie.com								
Virtua By Jam	ealth	naging				Search			
Februan specializ Calling t studies	сомг	MUNIC	ATIC	ONS					
tracking In a rela upon DF	Г	AC	M					RESEARCH F	
Bony o Dual-eni MacMah	Home /	Nov 26, 2007 Trir	Rib s	uppressio	<u>ower to digita</u> n aids pulr	al chest x-r	ays Dodule de	tection	
Dual-ene chest x-	NEWS	000	Nov 06,		r dido puli	nonaryn			
Despite to \$25,0 Dual-em success	Be	CHICAGO, Nov. examinations. A the University o	O	Chest x-ray CAE By Erik L. Ridley, Aunt/ November 15, 2010	scheme suppres: linnie staff writer	ses ribs to impi	rove results		
E Like (C	By Neil Commu	potential of digi according to a p	📄 The eva		alth	mag		000	
8+1 0 in Share	10.1145 Comme	North America (Dual-energy ima	diagnos study p		aluii	nay	ing.c		
 Print E-mail 	VIEW.	affect the attenu commonly uses	A team Kuman	(мп Images, Inte sen	Information &	knowledge	across the en	Conference	Uselikasus Tashasi
	11	a single examina allowing either l	recogni chest ra			Magazine	Newsletter	Conterences	Healthcare lechnol
RELATED		A technique util enhancement of	"With t standaı	Rib s	uppressi	on aids	pulmo	nary nod	ule detection
Low-dose CT to		With virtual dua	In researc	h de		the second second		Th	o ovaluation of a comb

