Artificial Intelligence Methods for Optimization of the Software Testing Process: with Several Industrial Case Studies

Sahar Tahvili, PhD

Al Product Development Leader, Test Framework & Al

Background

Education:

- Doctor of Philosophy in Computer Science, thesis entitled "Multi-Criteria Optimization of System Integration Testing", Mälardalen University, Sweden, 2018.
- Bachelor and Master of Philosophy in Applied Mathematics

Research Area:

- Software Testing
- Optimization
- Artificial intelligence
- Natural language processing

Publication

- Sahar Tahvili and Leo Hatvani. "Artificial Intelligence Methods for Optimization of the Software Testing Process With Practical Examples and Exercises". Elsevier, July 2022. This book has been published as a peer-reviewed manuscript by Elsevier (Academic Press). The presented results in this book have not been published before. Chapter 5 of this book includes 8 industrial use cases. Furthermore, both the proposal and manuscript underwent multiple revisions before publication.
- Michael Felderer, Eduard Paul Enoiu, and Sahar Tahvili. "Artificial Intelligence Techniques in System Testing". In optimizing the Software Development Process with Artificial Intelligence. Springer, July 2023.

 ACM Education & Learning Center @acmeducation · Mar 21

 This book presents one of the first empirical studies in the field, contrasting theoretical assumptions on innovations in a real industrial environment with a large set of use cases from developed and developing testing processes at various large industries.

 0 1
 the model of the first empirical studies in the field, contrasting theoretical assumptions on innovations in a real industrial environment with a large set of use cases from developed and developing testing processes at various large industries.

 0 1
 the Contrasting theoretical assumptions on innovations in a real industrial reaction of the real software testing on developed/developing Al-based solutions; serves as a guideline for conducting industrial research on the Al & software testing domain; explains all proposed solutions through real industrial case studies.

 Q
 th
 C
 th as
 th

<u>ACM on X</u>

Springer

Challenges

- For testing any software applications (such as Telecom, and safety-critical systems) a set of test cases needs to be generated.
- Test automation requires deep knowledge in the domain (Telecom, safetycritical systems), programming (Java, C#), and software testing.
- A set of test environments (testbed, test channel) are required.
- A mapping between the test scripts and test environments must be done manually and daily, which is not scalable.
- Manual scheduling of the test scripts to the test environments has required a team where they need to master:
 - The capacity, capability, and configuration for each test environment
 - The functional dependencies between test scripts
 - The duration of each test script (based on the lines of the code)

- Time and resource-consuming manual process.
- Requires deep knowledge in the domain, software testing, and test automation.
- Can not handle a large set of features and test
 environments.
- Paying no attention to the dependencies between test cases can lead to unnecessary failures between test cases by up to 40%.
- Running a test case on the wrong test environment leads directly to test failure.

Optimization Problems

- Test Environment Optimization
 - Dynamic scheduling and building test environments
- Test Execution Optimization
 - Parallel test execution
 - Faster troubleshooting processes
- Al-based Test Management System
 - Test automation
 - CI/CD Configuration Selection

A segment of the impact of artificial intelligence in software development during 2020-2021

Source: Tahvili. S and Hatvani. L, Artificial Intelligence Methods for Optimization of the Software Testing Process: With Practical Examples and Exercises, 2022

Al-aided Content Analysis: Transforming Unstructured Text into Structured Data for Efficient Research

 Collaborative, automated physical world
 Connected intelligent machines
 The internet of senses

A review of the history of text analytics

Source: Tahvili. S, Hatvani. L, Artificial Intelligence Methods for Optimization of the Software Testing Process: With Practical Examples and Exercises

Machine Learning

- NLP can be used to extract and analyze requirements from natural language documents, user feedback, and emails. It helps in understanding and prioritizing customer needs more efficiently.

Requirement Analysis SOFTWARE Evolution Design DEVELOPM CYCLF LIFE Testing Implementation

A schematic diagram of a machine learning-based approach for text mining.

- NLP can assist in test case generation by analyzing natural language requirements and converting them into test scenarios.

- **Machine Learning** can be applied to automated testing, where it learns from historical testing data to identify patterns and potential issues in the software.

- **Machine Learning** can be used for code generation, code completion, and code review. It can suggest code snippets and help identify potential coding errors.

Deep Learning

The neural system architecture of word embeddings.

Case Study 1:

- Automated Test Case Generation
- Test Data Generation
- Semantic Analysis

The spiral graph shows the dependencies between the requirements.

The clustered requirements specifications using the SBERT model. Minimizing test execution failure based on the dependencies up to 40%.

Case Study 2: Intelligence Test Management System

Intelligent Test Management System

Reads multiple types of inputs (controlled, noncontrolled natural text)

The proposed solution can create a test case when the minimal requirements are specified.

Test Setup		Test Procedure		
Pass Criteria		Pre-Post Condition		
Test instruction text default	Test Configuration	SW Track		
Tarrad Microcerrica	Test Duration	CHS Varification		
Tugges and over the	105 Diraton			
EPIC	Test framework	Context Name		
	Decision Support			
CI Configuration		Automation		
Pipeline 1		Automation		

complexity of the inserted input by the end-user

Case Study 3: Dynamic scheduling and building test environments

Real-time Optimization of Testbeds for Cloudified Radio Access Networks Using Artificial Intelligence

	Real time Optimization	on of Testbeds			
Metadata					
Request Number	Start Date yyyy-mm-dd		End Date 	n-dd 💼	
Priority					
Testbeds					
Bin_cat Feature_0 Feature_1 Feature_2	Feature_3 Feature_4 V	Feature_5		2024	
Multi_cat_feature_0	Multi_cat_feature_1 0	December	January February	March April	May June
Multi_cat_feature_2	Multi_cat_feature_3	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2 3 4 5 6 7 8 9 Request 9	10 11 12 13 14 15 16 Request 41	17 18 19 20 21 22 23 24 25 26 Request 11
const_feature_1 5 const_feature_2 3 const_feature_1	const feature 3 4	T2 Req T3 Req T4 Req	uest 8	Request 3 Request 13 Request 18	Request 5
		T_5	Request 118	Request 23	Bound 2
Component 1	Component 2		Request /	Request 127	Request 2

Some of the common artificial intelligence challenges in the industry *≸*

 \bullet

•

• Al strategies

Architecture

- Cyber security risk
- Supporting IT systems
- Integration with Cloud

Complexity

Lack of AI explainability

- Lack of skilled workers
- Operational complexity
- High computing power
- Meta learning

Training data

- Data management
- Data governance
- Insufficient data
- Inaccurate data

Data

Ongoing fee

- Implementation cost
- Maintenance cost
- Quantifying ROI

Cost

Source: Tahvili. S and Hatvani. L, Artificial Intelligence Methods for Optimization of the Software Testing Process: With Practical Examples and Exercises

Be part of our global team at Ericsson:

Imagine a better, brighter tomorrow, You can be the one who makes it possible, **145 years** of innovation

