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Introduction

• Introduction to Wind Energy
• Significance of wind energy in the renewable spectrum

Wind energy plays a critical role in the renewable energy spectrum by providing a
sustainable and eco-friendly solution to meet growing global energy demands. Its
increasing deployment reduces reliance on fossil fuels, significantly contributing to
the mitigation of climate change.

• Challenges in power prediction due to erroneous and missing data
Challenges in power prediction for wind turbines arise due to the presence of
erroneous and missing data, which can lead to inaccuracies in the models. These
data issues disrupt the reliability of power forecasts, complicating grid stability and
efficient energy management.



Research Motivation

• Enhancing Power Prediction Accuracy
• Need for reliable power predictions for grid stability and energy

management
Reliable power predictions are essential for grid stability and efficient energy
management, as they help balance supply and demand, prevent blackouts, and
optimize the integration of renewable energy sources into the power grid. Accurate
forecasts ensure that wind energy contributions are effectively utilized, enhancing
overall grid performance and sustainability.

• Traditional methods vs. advanced techniques
Traditional methods for wind turbine power prediction often rely on basic statistical
models and simple imputation techniques, which can struggle to handle the
complex, non-linear relationships in the data. Advanced techniques, such as auto-
encoders and Physics-Informed Neural Networks (PINNs), leverage machine
learning and physical principles to improve accuracy, effectively addressing the
intricacies of erroneous and missing data.



Related Work

• Key Approaches and Limitations
• Traditional anomaly detection and imputation methods

Traditional anomaly detection methods use simple statistical techniques that may
miss complex patterns in the data. Basic imputation methods like mean or median
substitution often oversimplify data, leading to inaccuracies in power prediction
models.

• Recent advancements using auto-encoders and physics-informed
models

Recent advancements involve using auto-encoders for anomaly detection and data
imputation, which better capture complex patterns in wind turbine data. Physics-
Informed Neural Networks (PINNs) integrate physical laws with data-driven models,
enhancing prediction accuracy and ensuring physically plausible results.



Data Collection Overview

• Dataset Characteristics

Characteristic Description

Wind Farm Location Gujarat, India

Operational Period November 1st, 2022 - July 15th, 2023

Number of Turbines 16 wind turbines

Total Capacity 32 MW

SCADA Tags 1966 tags from various turbine components

Data Recording Frequency Approximately every 2 minutes

Data Averaging Interval 10-minute intervals

Focus Turbines 2 wind turbines

Filtered Data Criteria Wind speed < 3 m/s or > 10.5 m/s, and no
production (0 kWh)



Handling Outliers

• Identification and Methodology
• Types of outliers observed

• Non-operating Phase Outliers: These occur during maintenance phases when the
turbine's active power is zero despite wind speeds being within operational ranges.
These data points were identified as non-operational and removed to avoid
misinterpretation.

• Power Curve Deviation Outliers: These data points significantly deviate from
expected values on the power curve, potentially due to issues like dirt accumulation
on blades, or pitch malfunctions. These deviations indicate operational anomalies that
need to be addressed for accurate power prediction.

• Steps for outlier detection and removal
• Outlier detection involved visually examining wind speed versus power plots, using

interval-based methods to flag deviations, and validating against the power curve to
identify significant anomalies. These steps ensured the removal of non-operational
phase and power curve deviation outliers.



Methodology - Overview

• Overview of the data processing and analysis phases
The data processing and analysis phases involve detecting
and handling outliers, selecting key features, performing
anomaly detection, and employing clustering-based imputation
before integrating Physics-Informed Neural Networks (PINNs)
for robust power prediction. This comprehensive pipeline
ensures accurate and reliable wind turbine power forecasts.



Feature Selection

• Importance and Selection Process
• Initial selection guided by domain knowledge and data availability

The initial feature selection was guided by domain knowledge and data availability,
ensuring the inclusion of relevant SCADA parameters crucial for accurate power
prediction. Key features were shortlisted based on their significance to turbine
operations and their contribution to the prediction model's performance.

• Random Forest model for feature importance



Anomaly Detection

• Auto-encoder Based Approach for the
Detection of faulty sensors

• The auto-encoder architecture for anomaly
detection consists of an encoder that
compresses the input data into a latent
representation and a decoder that
reconstructs the input. The model is trained
using normal operational data to minimize
the reconstruction error. Faulty sensors are
detected by identifying instances where the
reconstruction error exceeds a predefined
threshold, indicating anomalies in the sensor
readings.



Clustering-Based Imputation
• Gaussian Mixture Models (GMM) for Imputation of missing

values
Gaussian Mixture Models (GMM) were used to cluster turbines based on
multiple features, capturing the complex distributions of the data. This
clustering enabled effective imputation of missing values by replacing
them with the mean values from the corresponding clusters, thereby
preserving the underlying data structure and improving prediction
accuracy.



Power Output Modeling

• Neural Network Architecture with Integration of physics-
informed loss

Description of neural network layers and training process : The power
output model uses a neural network with multiple fully connected layers,
each employing ReLU activation functions and dropout for regularization.
The network is trained using a 3-fold cross-validation approach,
optimizing the Mean Absolute Error (MAE) loss. Additionally, a physics-
informed loss function, derived from energy conservation laws governing
wind turbines, is integrated into the training process to ensure predictions
are both accurate and physically plausible.

• [Patent NN diagram for power loss modelling with PINN]



Physics-Informed Loss

• Energy Conservation Laws
• Derivation of physics-based loss function

The physics-informed loss function is derived from energy
conservation laws, accounting for the power in the wind, losses at the
blades, gearbox, and generator. This loss function is applied to the
power prediction model to ensure that the predicted output adheres to
physical principles, thereby improving the model's accuracy and
reliability.



Imputation Accuracy

• Imputation Accuracy Comparison
• Comparison of GMM, Autoencoder, K-means, and Simple Average

methods



Validation of Anomalies

• Sensitivity Analysis
• The sensitivity analysis involved testing the model by introducing various

anomaly scenarios, such as altering sensor values to simulate faulty readings.
The model's response to these scenarios was evaluated by measuring the
reconstruction error, confirming its ability to detect anomalies accurately and
ensuring the robustness of the anomaly detection mechanism.



Evaluation Metrics

• Performance Metrics
• Accuracy of power prediction

• Measure how closely the predicted power values match the actual values using the coefficient of determination
($R^2$).

• Evaluate the improvement in prediction accuracy with the integration of physics-informed loss.

• Robustness of imputation techniques
• Assess the effectiveness of various imputation methods in handling missing and erroneous data.
• Compare the performance of GMM-based imputation against other techniques like autoencoders and simple average

imputation.

• [Table comparing $R^2$ values with and without physics loss]



Ablation Study

• Feature Contribution
• Impact of each feature on prediction accuracy

• Conduct an ablation study by individually adjusting each feature from its mean value.

• Compare the prediction accuracy with and without the physics-informed model to evaluate the
significance of each feature.

• [Table showing accuracy with and without physics model for different feature
deviations]



Results and Discussion

• Key Findings
• Improvement in prediction accuracy with physics-informed loss

• Incorporating physics-informed loss into the power prediction model significantly
enhances accuracy.

• The $R^2$ values show marked improvement across different scenarios,
demonstrating the effectiveness of integrating physical principles with data-driven
models.

• Better imputation accuracy using GMM
• The Gaussian Mixture Model (GMM)-based imputation method outperforms

traditional techniques such as K-means and simple average imputation.

• GMM effectively handles the complex, non-linear associations in the data,
resulting in lower Mean Absolute Error (MAE) and more reliable imputation.



Conclusion

• Summary of Contributions
• Enhanced power prediction accuracy

• Integration of data-driven and physics-based models



Future Work

• Potential Enhancements
• Optimization of clustering techniques

• Integration with real-time data
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