Add on Navigation & Control System for Outdoor Autonomous Wheelchairs for Physically and Mentally Challenged People

Ali T. Alouani, Professor of ECE Tennessee Technological University USA aalouani@tntech.edu

Introduction

• Statistical Facts

- Visually Impaired: 1.3 million blind in the US [1]
- Paralysis: 5.4 million in the US [2]
- Arms Amputee: 350,000 in the US [3]
- Lack of Independent Mobility: 19 millions: [nih.gov]

Semi-Autonomous Outdoor Wheelchairs)

	Sensors	Features	Limitations
Alam Wheelchair (2019) [1]	3 Sonars (Object Avoidance), 3-Axis Accelerometer (Tipping Detection), GPS (Communication)	Voice/Gesture/Joystick, Tipping detection, Text notification, Semi- Autonomous	No path planning or mapping
Bangladesh University Wheelchair (2017) [2]	Sonar (Object Avoidance), 3-Axis Accelerometer (Slope Detection), Encoders	Voice/Joystick, Speed control based on slope, Semi-Autonomous	No Path Planning nor mapping
Tunku Abdul Rahman University Wheelchair (2017) [3]	Webcam, 2 Magnetometers	Edge/Free space Detection, Semi- Autonomous	No Path Planning nor mapping
Gaziantep University Wheelchair (2021) [4]	Camera	Image Processing via vanishing point detection, Semi-Autonomous	No path planning, no mapping, and no obstacle avoidance

Fully-Autonomous Outdoor Wheelchairs

	Sensors	Features	Limitations	Cost
Lehigh University Wheelchair (2014) [5]	2 IFM 3D Cameras, 2D LiDAR	Stochastic Terrain Classification (PMF), Landmark map, Automatic Path Planning, Fully- Autonomous	Highly computational, Struggle with terrain borders	>\$4500 not including wheelchair
The Free University Wheelchair (2020) [6]	Spherical Omnidirectional Camera, IMU, GPS	VCA, Visual Memories, Fully- Autonomous	Guided Tour, Manual Path Planning	>\$1700 not including wheelchair

Motivations

Provide Mobility Independence to Include physically as well as mentally challenged people

Affordability

TTU Campus Map

Proposed System

High-Level Control Block Diagram

Emergency Stop Motor High-Level Driver Control MCU Disable/ Enable Breaks Encoders Low-Level Control Block Diagram

Implementation Using OpenStreetMaps

Applications

Convolutional Deep Neural Network

- BiseNetV2 Semantic Segmentation
 - Detail and Semantic Branch
 - Lightweight
 - 9000 Images

BiseNetV2 Performance

Sidewalk Intersection

Yes Arrived at Destination?

Conclusions

- Designed and developed and add on autonomous control and navigation system to accommodate physically and mentally challenged people
- Alert system when driver is lost due to dimentia
- Affordable solution
- Preliminary successful testing

Future Work

- Extensive on campus testing
- Add safety features
- Extend human machine interface
- Test the system using people with dementia
- Add safe road crossing capability
- Road/public places testing
- Potential commercilization