

Prediction of Centroid Pixel Values in Image Triangulations Using a Graph Neural Network

Porto July 2024

Presenter: Luka Lukač (luka.lukac@um.si)

Faculty of Electrical Engineering and Computer Science Other authors: Andrej Nerat Damjan Strnad Filip Hácha Borut Žalik

Institute of Computer Science Laboratory for Geospatial Modelling, Multimedia and Artificial Intelligence

IARIA Congress 2024

Presenter

- Luka Lukač
- Faculty of Electrical Engineering and Computer Science
- University of Maribor, Slovenia
- PhD candidate dealing with:
 - Artificial Intelligence,
 - Data Compression,
 - Big Data Analysis

Motivation

- Prediction \rightarrow Better compression ratios
- Most predictions operate on ordered data
- Image triangulations not ordered
- Conventional prediction methods not directly applicable

Graph Neural Network (GNN)

- Machine learning method, operating on a graph domain
- Well-suited for unstructured data
- Modern & popular architecture used for:
 - materials science,
 - recommendation systems,
 - natural phenomena forecasting,
 - image classification,
 - image clustering,
 - etc.

Method

Three major parts:

- detection of key pixels,
- graph construction,
- centroid pixel values' prediction

Detection of Key Pixels

- Key pixels → Important image features
- Largest gradients (e. g., edges and corners)
- Edge and corner detectors
- User-given rate of key pixels

Graph Construction

- Delaunay triangulation:
 - Vertices \rightarrow Key pixels
 - Edges \rightarrow Triangles' sides
- Calculation of edge weights:

 $w_{i,j} = \begin{cases} 1 & d(v_i, v_j) = 0\\ \frac{1}{d(v_i, v_j)} & \text{otherwise} \end{cases}$

 Centroid pixel with an unknown value added to each triangle

Centroid Pixel Values' Prediction

- GNN
- Initial centroid pixel values set to average value of their corresponding triangles
- Regression task \rightarrow Prediction of centroid pixel values

GNN Training

- DIV2K dataset (1,000 images) split into:
 - training dataset (800 images),
 - validation dataset (100 images),
 - testing dataset (100 images)
- Rate of key pixels varied from 2% to 10% (9 samples from 1 image)
- Min-max normalization of pixel values

Hyperparameter	Value
Number of epochs	10
Learning rate	0.001
Batch size	1
Optimisation algorithm	Adam
Loss function	Mean squared error (MSE)

Results (I.)

- Compared with barycentric coordinates (BC) and inversedistance weighting (IDW)
- Evaluation metric \rightarrow Root-mean-square error (RMSE)
- GNN outperformed BC and IDW in 839 of 900 test samples

Method	Value
BC	22.54
IDW	23.23
GNN	20.26

Results (II.)

- GNN better than BC by 10.11%
- GNN better than IDW by 12.79%

Method	Value
BC	22.54
IDW	23.23
GNN	20.26

Conclusion

- New method for prediction of centroid pixel values in image triangulations
- GNN trained on a large dataset of diverse greyscale images
- GNN better than conventional interpolation methods such as BC and IDW

Future work:

- integration into data compression algorithms,
- prediction of all pixel values inside triangulations

Thank you for your attention!