Security and IoT Applications of the Cryptosystem TinyJambu

A. FÚSTER-SABATER and M. E. PAZO-ROBLES

Institute of Physical and Information Technologies Spanish National Research Council **(CSIC)** Madrid, SPAIN <u>amparo.fuster@csic.es</u> <u>eugepazorobles@gmail.com</u>

Amparo Fúster-Sabater

- Amparo Fúster-Sabater received the M.S. and Ph. D. in Physics from the University of Madrid (Spain) in 1992 and 1996, respectively.
- She is currently a Scientific Researcher at the Institute of Physical and Information Technologies (Spanish National Research Council) in Madrid.
- Her current research interests are: symmetric cryptography, cryptanalysis, cellular automata, discrete systems, linearization of complex systems.

NIST call for lightweight cryptography

IoT Technology: deployed to connect devices of daily use all these connections need security!!!!

The National Institute of Standards and Technology (NIST)

"initiated a process to solicit, evaluate, and standardize lightweight cryptographic algorithms" (2018)

https://csrc.nist.gov/Projects/lightweight-cryptography

Lightweight does not means less secure

Cryptosystem TinyJambu:

one of the 10 finalists

Connecting the world

The Cryptosystem TinyJambu

TinyJambu: <u>the fastest</u> among the 10 finalists

Authors: Hongjun Wu and Tao Huang (Division of Mathematical Sciences, Nanyang Technological University, China) <u>https://csrc.nist.gov/Projects/lightweight-cryptography/round-2-candidates</u>

Different versions of TinyJambu:

Name	Key	Nonce	Тад	State
TinyJambu-128	128 bits	96 bits	64 bits	128 bits
TinyJambu-192	192 bits	96 bits	64 bits	128 bits
TinyJambu-256	256 bits	96 bits	64 bits	128 bits

The cryptosystem TinyJambu: structure

The Cryptosystem TinyJambu: Operation mode

NONCE introduction

for i from 0 to 2
 Update the state using P₃₈₄
 s_{96 ... 127} = s_{96 ... 127} + nonce_{32i ... 32i+31}
end for

ENCRYPTION

for i from 0 to [mlen/32]
Update the state using P₁₀₂₄
ciphered_{32i ... 32i+31} = s_{96 ... 127} + message_{32i ... 32i+31}
end for

AD introduction

for *i* from 0 to [*adlen/32*] Update the state using P_{384} $s_{\{96 \dots 127\}} = s_{\{96 \dots 127\}} + ad_{\{32i \dots 32i+31\}}$ **end** for

TAG construction

Update the state using P_{1024} $tag_{\{0 \dots 31\}} = s_{\{64 \dots 95\}}$

Update the state using P_{384} $tag_{32 \dots 63} = s_{64 \dots 95}$

- Differential Cryptanalysis: evolution of the nonlinear part
- Active AND gate is a differential with

$$\Delta(S_{70+j}S_{85+j}) = 1 \quad (j = 1, \cdots, 384)$$

Probability of success for a differential attack is related with the number of active AND gates X = No. active AND gates $P_{success} \approx 2^{-X} = \frac{1}{2^X}$

IDEA: find differential trails that minimize the number of AND gates

Security margin in TinyJambu (II)

Designers:
$$X = 80$$
 \longrightarrow $P_{designers} \approx 2^{-80}$

Saha et al.: Saha, D., Sasaki, Y., Danping, S., Sibleyras, F., and Sun, S., "On the Security Margin of TinyJAMBU with Refined Differential and Linear Cryptanalysis". *IACR Transactions on Symmetric Cryptology* 2020(3), 152–174 (2020).

Correlation conditions:

• If
$$(\Delta S_{70+j}, \Delta S_{85+j}, \Delta S_{100+j}) = (1, 0, 1)$$
 and $S_{85+j} = 1$
• then

$$\Delta(S_{70+j}S_{85+j}) = \Delta(S_{85+j}S_{100+j}) = 1$$

After 15 rounds

They count "<u>correlated active gates</u>" as a single active AND gates, thus the number of active gates is **reduced**

$$X = X_{AND} - X_{corr} = 88 - 14 = 74$$

Our contribution

- A more refined search of differential trails based on the Saha et al.
 Model (correlated AND gates)
- We identify multiple trails for 384 rounds
- We find differential trails with a number of active gates less than the number previously computed

$$X = X_{AND} - X_{corr} = 84 - 13 = 71$$
 $P_{our} \approx 2^{-71}$

Gurobi Optimizer (11.0.0) + programmes in Python language 3.11 64-bit + a desktop PC (13th Gen Intel® Core™ i9-13900K with 3.00GHz, RAM 128 GB, 24 cores) Microsoft Windows 11 Pro Operating System

Comparison among probabilities

For 384 rounds

TABLE 1. SAHA et al. differential probabilities

Input	
	Output

Probability	2 ⁻⁷⁴	2 ⁻⁷⁵	2 ⁻⁷⁶	2 -77	2 -78	2 ⁻⁷⁹
# Trails	1	5	9	14	20	24

TABLE 2. OUR differential probabilities

Probability	2 -71	2 -72	2 -73	2 -74	2 -75	2 -76
# Trails	9	24	27	28	18	14

Improving the security level

- For 384 rounds: TinyJambu is not SECURE
- Increasing the number of rounds up to 640 rounds:
 - The number of active gates increases too
 - TinyJambu seems to be immune to this kind of differential attack

TinyJambu exhibits good performances: (simplicity + speed)

- Good relationship throughput/area
- Speed in encryption/decryption process
- Low energy consumption
- The 640-version of TinyJambu is recommended for IoT Applications non equipped with security mechanisms

IoT Applications

The 640 round-version TinyJambu is recommended for:

- Any sort of wearable devices (fitness tracker, smartwatches, wearable blood pressure, etc)
- Environmental Sensors: humidity, temperature, smart agriculture (Good environmental conditions)
- Smart cities: air quality, parking planification, garbage collection, home automation, ...
- In general, in any kind of application with
 - A non very demanding level of security

The 640 round-version TinyJambu is <u>not</u> recommended for:

 Any sort of critical infrastructures (power plants, protection of classified information, Defence sector, emergency services, ...)

Conclusions and Future Work

- TinyJambu with 384 rounds exhibits security flows
- The updated version with 640 rounds increases the level of security
- This updated version <u>can be recommended</u> for IoT applications with no high level of security
- This updated version <u>must not be recommended</u> for applications with a very demanding level of security.

Future work:

- Incorporation of TinyJambu in protocols operating in sensors Networks (e.g. MQTT protocol)
- Study the relation between number of rounds and minimum number of active AND gates

Acknowledgements

Thanks to

Project *PID2020-112586RBI00* funded by

Project P2QProMeTe *PID2020-112586RBI00* funded by MCIN/ AEI /10.14039/501100011033

