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Convolutional Neural Networks 

(CNNs):

• Specialized for image classification, 

detection, and segmentation.

• Extract features using pooling layers for 

accurate predictions.

• Inspired by the human visual cortex.

• Trained on extensive datasets with 

backpropagation and human-configured 

parameters.

Introduction

Image adapted from Ng, Andrew. "AI for Everyone." Coursera.



The goal of our paper is to:

• Evaluate CNN binary classification performance on CPU and GPU cloud platforms.

• Provide comprehensive benchmarking analysis of computational efficiency.

Objectives of our study are:

• Comparative analysis of CPU vs. GPU performance for CNNs.

• Methodological insights into implementing CNNs on different architectures.

• Empirical data from extensive experiments on benchmarking datasets.

• Practical guidelines for deploying CNN models on CPU and GPU platforms.

Goals and Objectives of our paper



Importance of CNNs:

• GPUs outperform CPUs by 2 to 24 times in CNN tasks due to parallel processing capabilities 

(Strigl et al., 2010; Cengil et al., 2017).

• CPUs have sequential processing limitations (Strigl et al., 2010).

         Performance Factors:

• Power efficiency and cost are critical in hardware selection (Süzen, 2020).

• CPUs in embedded systems achieve 65% of a PC's GPU performance with only 2.6% of the 

power (Oh et al., 2017).

      Benchmarking Studies:

• Machine learning models predict CNN execution time, power, and memory usage to aid 

hardware selection (Bouzidi et al., 2022).

Literature Review



Methodology
1. CNN Architecture:

• The architecture includes input 
layers, convolutional and 
pooling layers, and fully 
connected layers.

• The goal is to recognize and 
interpret intricate patterns in the 
dataset, consisting of high-
quality images of dogs and cats.

Image adapted from Phung, V. H. and E. J. Rhee (2018). Journal of information and communication convergence engineering 16(3): 173-178.



Methodologyy

2. Data Acquisition

Utilized comprehensive datasets from Kaggle and Google.

Included a diverse collection of high-quality images of various 

dog and cat breeds.

These datasets are essential for training and evaluating the 

CNN models effectively.



Methodology
3. Experimental setup:
• Trained CNN model using Google Colab with 

Keras support on Google Cloud's CPUs and 
GPUs.

• Achieved high training speeds and used 
network pruning without losing accuracy.

• Made minor code adjustments to improve GPU 
performance and ensure consistency.

• Imported data from Google Drive, transitioned 
from CPU to GPU training, and optimized 
tensor operations and memory management for 
faster, accurate results.



1. True Positive Rate (TPR):

𝑻𝑷𝑹 =
𝑻𝑷

𝑻𝑷 + 𝑭𝑵

2. Training Time:

• Monitored to assess model efficiency across different 

hardware setups.

• Highlights trade-offs between accuracy and speed.

Evaluation Metrics

• Measures the proportion of correctly 

identified positive instances.

• Essential for evaluating the model's 

accuracy in scenarios with class 

imbalances.



Results

Figure Observations

TPR by Epoch

• CPU has a better TPR than GPU in the 

early epoch. 

• GPU shows consistent improvement, 

especially in later epochs. 

• GPU achieves peak TPR in the fourth 

epoch.

• Overall, GPUs demonstrate superior 

performance in extensive training 

iterations compared to CPUs.

Trained model on an 8000-image dataset of dogs and cats.

                Batch sizes (16, 32, 64, 128) and Epochs (1 to 5).

                Used 1000-image dataset for comparative analysis.



Results
Figure Observations

• GPUs have consistently lower training 

times than CPUs initially.

• CPU times rise significantly; GPU 

times remain stable and faster.

• GPUs reduce training time for each 

epoch, proving superior efficiency.

• Both CPU and GPU perform well 

across batch sizes; CPUs slightly 

outperform GPUs at smaller sizes.

• TPR remains high and consistent for 

both, showing their effectiveness in 

binary classification tasks.

Training Time by Epoch

TPR by Batch Size



Results
Figure Observations

• GPUs have consistently shorter 

training times across all batch sizes 

compared to CPUs.

• GPU training times remain stable as 

batch sizes increase, while CPU times 

rise.

• GPUs offer a clear advantage in 

training time efficiency over CPUs.

• GPUs reach high TPR with shorter 

training times compared to CPUs.

•  GPUs achieve peak TPR faster than 

CPUs. 

• CPUs show a slight TPR decline 

beyond 600 seconds, while GPUs 

maintain stable high performance.

Training Time by Epoch

TPR by Batch Size



Conclusion & Future work

Conclusion

• GPUs consistently outperformed CPUs in training 

efficiency and execution speed.

• GPUs achieved higher or comparable True Positive 

Rates (TPR) with marked performance consistency.

• GPUs showed superior efficiency, especially with 

increased batch sizes, compared to CPUs. 

• GPUs offer substantial advantages in speed and 

accuracy for extensive CNN tasks.

Future Work

• Include more hardware models, such as NVIDIA’s 

Tesla and RTX series. 

• Better understand CPU and GPU performance 

differences to select optimal hardware for CNN tasks. 

• Conduct cost and performance analysis to improve 

hardware selection and 
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