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Model-Driven Software 
Engineering (MDSE)

Section 01
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Model-Driven Software Engineering Approaches

Claim:

MDSE approaches typically concentrate on

● subject domain models and

● high-level (abstract) solution descriptions.

The final step of code generation relies on

● a predefined solution strategy

(for example, for information systems) or

● a specification formalism

(custom functionality)

Modeling often concentrates on the early development stages

Domain Model Software Model Software

Abstract Model

More Concrete 
Model

More Complete 
Model

More Concrete More 
Complete Model

Abstract Model

More Concrete 
Model

More Complete 
Model

More Concrete More 
Complete Model

Code



10/01/2024Building Model-Based Code Generators – Hans-Werner Sehring – ICSEA 2024

6

(Software Engineering) Project Lifecycle
Actual (software engineering) projects span a larger lifecycle
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Code Generation

Section 02
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Typical approaches to bridge the (rather large) gap between specification and code

● Templates

● Meta programs

● Generative AI

Hyprid approaches, for example,

● Templates and meta programming

– Templates as a domain specific language for 

– Meta programming for application-specific idioms

● Generative AI and meta programming

Software generators created by generative AI

Approaches to Code Generation
Claim: current approaches are either limited or costly
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Abstract Code 
Models

Section 03



Building Model-Based Code Generators – Hans-Werner Sehring – ICSEA 2024

10

10/01/2024

After finishing work on a model of the solution (architecture), transformation step into stage of coding

1) Choice of a basic implementation strategy (e.g., programming language of a certain paradigm)

2) Creation of a model of implementation (code)

Make models of code evolve like models of other domains

3) Formulation of first hypothetical code (program in no particular programming language)

4) Stepwise optimization of the hypothetical program

5) Transformation into a model for the code in a concrete programming language

6) Application of idioms, patterns, best practices, … of that programming language

7) Application of local style guides

8) Transformation into a model for the utillization of specific software libraries, using specific APIs, etc.

Basic Idea
Break down the large step to code into smaller steps by means of model transformations
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Interplay of Software Models

Examples:

APM:

● Object-oriented programming or

● Domain-Driven Design

CPM:

● Java or

● Java according to some style guide

ADM:

solution expressed in abstract notation

AIM:

solution adopting best practices of some 

technology

Models of the software solution evolve like application domain models do
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Example of Software Model Relationships
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The Minimalistic 
Meta Modeling 

Language (M L)³

Section 04
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The Minimalistic Meta Modeling Language has been reported on in other talks.

Idea:

● Modeling language with very lean syntax and semantics

● Applicable on all (four) levels from instance to meta-meta

● A framework for seamless modeling of all aspects of a problem solution

Only construct: concept definition (or reference)

SomeConcept is a BaseConcept { concept, base concept, refinement

  Content is a ContextSpecificRefinement content in context

} |= ProductionRule semantic rule

  |- PartialGrammarForSyntax . syntactic rule

Plus: inheritance (from base concepts), scopes, redefinitions (in context), pattern matching, evaluation

Eine Folie für alle Inhalte
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Code Models in 
M L³

Section 05
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Programming Paradigms – Imperative PLs

Type system (any paradigm)

Type

Boolean is a Type

True  is a Boolean

False is a Boolean

Integer is a Type

0       is an Integer

PositiveInteger

  is an Integer {

  Pred is an Integer }

1 is a PositiveInteger {

  0 is the Pred }

Imperative Basics

Statement

Expression

  is a Statement

Variable {

  Name

  Type }

Procedure {

  FormalParameter

    is a Variable

  Statement }

Some Statements

ConditionalStatement

  is a Statement {

  Condition is a Boolean

  ThenStatement

    is a Statement

  ElseStatement

    is a Statement }

Loop is a Statement {

  Body is a Statement }

HeadControlledLoop

  is a Loop {

  Condition is a Boolean }
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Example of Software Model Relationships in M L³
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ADM refinements in order to optimize a program on the abstract level.

Example: company organization

Unit {

  Departments is a Department

}

Department {

  Teams is a Team

}

Team {

  TeamMembers is an Employee

}

Employee is a Person

Code Model Refinements

OrgUnits is a CompositePattern {
  OrgUnit    is the CommonType
  Team       is the LeafClass
  Unit       is a   BranchClass
  Department is a   BranchClass
}
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ADM to AIM transformations to accomodate for a specific target language (or other technology)

Model-to-Text Transformations are defined in the CPM – in our case, M L again³

For example, generic OO to Java:

PersonClass is a ConcreteClass {

  AgeOfMajority is an Integer

  18 is the AgeOfMajority

}

Person is a PersonClass {

  Name is a String

}

Peter is a Person {

  "Peter Smith" is the Name

}

Concrete Code Models

Java {

  Person is a Class {
    AgeOfMajority is an int {
      static is a Modifier
      public is a Modifier }
    18   is the AgeOfMajority
    Name is a String … }

  PeterHandle is a Variable {
    peter is the Name String is the Type
    ConstructorCall {
      Person is the Class
      "Peter Smith" is a Parameter
    } is the InitialValue } }
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Conclusion

Section 06
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Code generation as the final step of Model-Driven Software Engineering processes is typically expressed as a 

model-to-text transformation.

This transformation has to bridge a large gap from an abstract description of the desired software solution to 

working code.

Furthermore, code to meet nonfunctional requirements and project constraints is added in this step.

As a result, the development of code generators is a demanding and expensive task.

By introducing models of the domain code, model-to-model transformations can be applied longer down the 

sequence of development steps. As a result, code generation becomes

● more feasible,

● less costly, and

● allows more reuse (on the level of models).

Summary
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Currently work carried out on the basis of small code samples → experiments with large scale applications

Contemporary programming languages are of a multi-paradigm nature → study degrees to which each 

paradigm is followed varies, as well as the interplay of language constructs of different paradigms

Models of code may carry semantics – of abstract programs as well as of concrete code → translation of 

domain semantics into program semantics needs investigation

Outlook on Future Work
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