
Building Model-Based
Code Generators for
Lower Development
Costs and Higher Reuse
Paper Presentation, 10/01/2024

19th Int. Conf. on Software Engineering Advances

ICSEA 2024, Venice Italy
Hans-Werner Sehring

2

Hans-Werner Sehring

Model-Driven Software Engineering

Evolution-friendly software architecture

Software engineering education

Software Engineering

Domain Modeling

Software Modeling

M L³

Metamodellierung

Digital communication

Media-based knowledge representation

Personalization

Content Management

hans-werner.sehring@nordakademie.de
https://www.nordakademie.de/die-hochschule/team/hans-
werner-sehring

http://dr.sehring.name

https://orcid.org/0009-0008-3016-6868

https://www.researchgate.net/profile/Hans-Werner-Sehring

https://scholar.google.de/citations?user=hsSrVL8AAAAJ

https://www.linkedin.com/in/hwsehring/

Software Engineering

Contact

Professor for Software Engineering
Head of the Business Informatics / IT Management (M.Sc.) degree program

3

10/01/2024

Agenda

01 The context of model-driven software

engineering
02 Typical code generation approaches

03 Models of code at different levels of

abstraction
04 The Minimalistic Meta Modeling Language

05 Some samples of abstract code models 06 Summary and outlook

MDSE

Abstract Code Models

Code Models in M L³

Code Generation

The M L³

Conclusion

4

Building Model-Based Code Generators – Hans-Werner Sehring – ICSEA 2024 10/01/2024

Model-Driven Software
Engineering (MDSE)

Section 01

Building Model-Based Code Generators – Hans-Werner Sehring – ICSEA 2024

5

10/01/2024

Model-Driven Software Engineering Approaches

Claim:

MDSE approaches typically concentrate on

● subject domain models and

● high-level (abstract) solution descriptions.

The final step of code generation relies on

● a predefined solution strategy

(for example, for information systems) or

● a specification formalism

(custom functionality)

Modeling often concentrates on the early development stages

Domain Model Software Model Software

Abstract Model

More Concrete
Model

More Complete
Model

More Concrete More
Complete Model

Abstract Model

More Concrete
Model

More Complete
Model

More Concrete More
Complete Model

Code

10/01/2024Building Model-Based Code Generators – Hans-Werner Sehring – ICSEA 2024

6

(Software Engineering) Project Lifecycle
Actual (software engineering) projects span a larger lifecycle

7

Building Model-Based Code Generators – Hans-Werner Sehring – ICSEA 2024 10/01/2024

Code Generation

Section 02

Building Model-Based Code Generators – Hans-Werner Sehring – ICSEA 2024

8

10/01/2024

Typical approaches to bridge the (rather large) gap between specification and code

● Templates

● Meta programs

● Generative AI

Hyprid approaches, for example,

● Templates and meta programming

– Templates as a domain specific language for

– Meta programming for application-specific idioms

● Generative AI and meta programming

Software generators created by generative AI

Approaches to Code Generation
Claim: current approaches are either limited or costly

9

Building Model-Based Code Generators – Hans-Werner Sehring – ICSEA 2024 10/01/2024

Abstract Code
Models

Section 03

Building Model-Based Code Generators – Hans-Werner Sehring – ICSEA 2024

10

10/01/2024

After finishing work on a model of the solution (architecture), transformation step into stage of coding

1) Choice of a basic implementation strategy (e.g., programming language of a certain paradigm)

2) Creation of a model of implementation (code)

Make models of code evolve like models of other domains

3) Formulation of first hypothetical code (program in no particular programming language)

4) Stepwise optimization of the hypothetical program

5) Transformation into a model for the code in a concrete programming language

6) Application of idioms, patterns, best practices, … of that programming language

7) Application of local style guides

8) Transformation into a model for the utillization of specific software libraries, using specific APIs, etc.

Basic Idea
Break down the large step to code into smaller steps by means of model transformations

Building Model-Based Code Generators – Hans-Werner Sehring – ICSEA 2024

11

10/01/2024

Interplay of Software Models

Examples:

APM:

● Object-oriented programming or

● Domain-Driven Design

CPM:

● Java or

● Java according to some style guide

ADM:

solution expressed in abstract notation

AIM:

solution adopting best practices of some

technology

Models of the software solution evolve like application domain models do

10/01/2024Building Model-Based Code Generators – Hans-Werner Sehring – ICSEA 2024

12

Example of Software Model Relationships

13

Building Model-Based Code Generators – Hans-Werner Sehring – ICSEA 2024 10/01/2024

The Minimalistic
Meta Modeling

Language (M L)³

Section 04

Building Model-Based Code Generators – Hans-Werner Sehring – ICSEA 2024

14

10/01/2024

The Minimalistic Meta Modeling Language has been reported on in other talks.

Idea:

● Modeling language with very lean syntax and semantics

● Applicable on all (four) levels from instance to meta-meta

● A framework for seamless modeling of all aspects of a problem solution

Only construct: concept definition (or reference)

SomeConcept is a BaseConcept { concept, base concept, refinement

 Content is a ContextSpecificRefinement content in context

} |= ProductionRule semantic rule

 |- PartialGrammarForSyntax . syntactic rule

Plus: inheritance (from base concepts), scopes, redefinitions (in context), pattern matching, evaluation

Eine Folie für alle Inhalte

15

Building Model-Based Code Generators – Hans-Werner Sehring – ICSEA 2024 10/01/2024

Code Models in
M L³

Section 05

Building Model-Based Code Generators – Hans-Werner Sehring – ICSEA 2024

16

10/01/2024

Programming Paradigms – Imperative PLs

Type system (any paradigm)

Type

Boolean is a Type

True is a Boolean

False is a Boolean

Integer is a Type

0 is an Integer

PositiveInteger

 is an Integer {

 Pred is an Integer }

1 is a PositiveInteger {

 0 is the Pred }

Imperative Basics

Statement

Expression

 is a Statement

Variable {

 Name

 Type }

Procedure {

 FormalParameter

 is a Variable

 Statement }

Some Statements

ConditionalStatement

 is a Statement {

 Condition is a Boolean

 ThenStatement

 is a Statement

 ElseStatement

 is a Statement }

Loop is a Statement {

 Body is a Statement }

HeadControlledLoop

 is a Loop {

 Condition is a Boolean }

10/01/2024Building Model-Based Code Generators – Hans-Werner Sehring – ICSEA 2024

17

Example of Software Model Relationships in M L³

Building Model-Based Code Generators – Hans-Werner Sehring – ICSEA 2024

18

10/01/2024

ADM refinements in order to optimize a program on the abstract level.

Example: company organization

Unit {

 Departments is a Department

}

Department {

 Teams is a Team

}

Team {

 TeamMembers is an Employee

}

Employee is a Person

Code Model Refinements

OrgUnits is a CompositePattern {
 OrgUnit is the CommonType
 Team is the LeafClass
 Unit is a BranchClass
 Department is a BranchClass
}

Building Model-Based Code Generators – Hans-Werner Sehring – ICSEA 2024

19

10/01/2024

ADM to AIM transformations to accomodate for a specific target language (or other technology)

Model-to-Text Transformations are defined in the CPM – in our case, M L again³

For example, generic OO to Java:

PersonClass is a ConcreteClass {

 AgeOfMajority is an Integer

 18 is the AgeOfMajority

}

Person is a PersonClass {

 Name is a String

}

Peter is a Person {

 "Peter Smith" is the Name

}

Concrete Code Models

Java {

 Person is a Class {
 AgeOfMajority is an int {
 static is a Modifier
 public is a Modifier }
 18 is the AgeOfMajority
 Name is a String … }

 PeterHandle is a Variable {
 peter is the Name String is the Type
 ConstructorCall {
 Person is the Class
 "Peter Smith" is a Parameter
 } is the InitialValue } }

20

Building Model-Based Code Generators – Hans-Werner Sehring – ICSEA 2024 10/01/2024

Conclusion

Section 06

Building Model-Based Code Generators – Hans-Werner Sehring – ICSEA 2024

21

10/01/2024

Code generation as the final step of Model-Driven Software Engineering processes is typically expressed as a

model-to-text transformation.

This transformation has to bridge a large gap from an abstract description of the desired software solution to

working code.

Furthermore, code to meet nonfunctional requirements and project constraints is added in this step.

As a result, the development of code generators is a demanding and expensive task.

By introducing models of the domain code, model-to-model transformations can be applied longer down the

sequence of development steps. As a result, code generation becomes

● more feasible,

● less costly, and

● allows more reuse (on the level of models).

Summary

Building Model-Based Code Generators – Hans-Werner Sehring – ICSEA 2024

22

10/01/2024

Currently work carried out on the basis of small code samples → experiments with large scale applications

Contemporary programming languages are of a multi-paradigm nature → study degrees to which each

paradigm is followed varies, as well as the interplay of language constructs of different paradigms

Models of code may carry semantics – of abstract programs as well as of concrete code → translation of

domain semantics into program semantics needs investigation

Outlook on Future Work

NORDAKADEMIE gAG Hochschule der Wirtschaft

Köllner Chaussee 11 · 25337 Elmshorn · Tel.: +49 (0) 4121 4090-0 · E-Mail: info@nordakademie.de · Web: www.nordakademie.de

	Folie 1
	Hans-Werner Sehring (2)
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18
	Folie 19
	Folie 20
	Folie 21
	Folie 22
	Folie 23

