
On the Object Oriented Petri Nets

Model Transformation into Java

Programming Language

Radek Kočı́

Brno University of Technology, Faculty of Information Technology

Czech Republic

koci@fit.vut.cz

ICSEA 2024, 1.10.2024, Venice, Italy

Motivation

Simulation-Based Design

• reduce the gap between real needs and specified needs
to sofware system under development

• combination of semi-formal and formal models

• formal and executable models showing a sketch of the
system to help visualize what the system will do

Model continuity

• elimination of the overhead caused by creating models at
different level of abstraction

• continuous incremental development of models

• models can work in live system

• no need of implementation or code generation

On the Object Oriented Petri Nets Model Transformation into Java Programming Language 2 / 17

Basic requirements for software design

Points that have to be met to create the correct and reliable
software system

1 understand the goals of the software project and precisely
specify the specific requirements whose implementation
meets the declared objectives

2 validate that the requirements specification is in line with
the objectives

3 based on a validated specification, create a system design
that reflects the conditions of a particular implementation
environment

4 verify that the system design complies with the
requirements

5 implement the verified design

6 verify that implementation is consistent with the design

7 verify accuracy and reliability of implementation under real
conditions

On the Object Oriented Petri Nets Model Transformation into Java Programming Language 3 / 17

Model-Continuity

Requirements model System model System implementation

use-cases

 use-case
realization

simulation simulation

behavior

structure
source
 code

 other
components

• design models complement and extend each other in the
development process

• no need to transform or create new models

• if the nature of the resulting application permits, it is
possible to maintain the models in the target system

On the Object Oriented Petri Nets Model Transformation into Java Programming Language 4 / 17

Basic requirements for software design

How to meet points 5, 6, and 7 (implementation and
verification)

• at the end, we have functional models that fully reflect the
system requirements

• these models can serve as implementation models, i.e.,
become part of the target system

• if this is inappropriate or impossible (e.g., for performance
reasons], we must implement or exploit
the ability to generate code

• consistency with the design does not need to be checked,
as the same set of models is still being developed

On the Object Oriented Petri Nets Model Transformation into Java Programming Language 5 / 17

Why Petri nets?

Formalism of OOPN (Object-Oriented Petri Nets)

⇒ clear formal syntax

⇒ clear semantics

⇒ usable by developers having no power mathematical
backgroud

Petri Nets Models

• we could use Petri nets in the same way with no need to
get executable form

• Petri nets are also a simulation model

• Petri nets can be executed in real environment

• Petri nets are formal, can be transformed

On the Object Oriented Petri Nets Model Transformation into Java Programming Language 6 / 17

OOPN Model Example

o

o := Rand next
t1

p2

p1

#e

C0 is_a PN

init: x
x

x
t1

x

return

x‘#e

o

get: o

o

C1 is_a PN

doFor: x

return

x

c := C0 new.
c init: x.

x t1

t2

c

c get: n
s := s + nc empty

t3

c

s

c

ss s

p1

p20

empty

• classes, object nets, method nets

• nets: places and transitions

• a transition ≈ a component that can be instantiated (fired)
multiple times for different variable bindings

On the Object Oriented Petri Nets Model Transformation into Java Programming Language 7 / 17

Basic Concepts of Transformation

Element Transformation

• OOPN class ≈ Java class
• object net ≈ constructor
• method net ≈ method
• place ≈ a special Java class
• transition ≈ an instance (component) of the special Java

class

Example of the OOPN class C1:

a >= 10

code1

a < 10

code2

t1 t2

p11 p1

p2

a ab

y z

5, 1510

On the Object Oriented Petri Nets Model Transformation into Java Programming Language 8 / 17

Basic Concepts of Transformation

public class C1 extends PN {

protected Place p11;

protected Place p1;

protected Place p2;

public C1() {

p11 = new Place(this);

p1 = new Place(this);

p2 = new Place(this);

class T_1 extends Transition { ... }

T_1 t1 = new T_1();

class T_2 extends Transition { ... }

T_2 t1 = new T_2();

t1.precond(p11, p1);

t2.precond(p1);

p1.add(5;

p1.add(15);

p11.add(10);

}

}

On the Object Oriented Petri Nets Model Transformation into Java Programming Language 9 / 17

Basic Java Classes for Transformation

OOPN is typeless

• the interface PNObject is the common type for all variables
(objects)

• message passing is done specially (the method send)

On the Object Oriented Petri Nets Model Transformation into Java Programming Language 10 / 17

Transition as a Component

class T 1 extends T r a n s i t i o n {
private PNObject a ;
private PNObject b ;
public boolean guard () {

// guard1 : a >= 10
i f (p11 . isEmpty ()) re tu rn fa lse ;
i f (p1 . isEmpty ()) re tu rn fa lse ;
a = p1 . s a t i s f y ((o) −> o . send(”>=” , 10)) ;
i f (a == n u l l) re tu rn fa lse ;
b = p11 . remove() ;
p1 . remove(a) ;
re tu rn true ;

}
public void action () {

// code1: y = a + b
PNObject y = a. send(”+” , b) ;
p2 . put (y) ;

}
public T r a n s i t i o n copy () {

T 1 t = new T 1 () ;
t .a = a;
t .b = b;
re tu rn t ;

}
}

On the Object Oriented Petri Nets Model Transformation into Java Programming Language 11 / 17

Component Execution

When an object is added to a place

• all connected transitions (components) are checked for
fireability

• if the transition can be fired (its guard returns true)
• a copy of the component is created
• the copy is executed in the different thread (throught the

executor)

void add(PNObject obj) {
synchronized (monitor) {

Integer c = content . get (obj) ;
c = (c != n u l l) ? c + 1 : 1 ;
content . put (obj , c) ;
f o r (T r a n s i t i o n t : observers) {

i f (t . guard ()) {
T r a n s i t i o n t t = t . copy () ;
PNSystem . execute (() −> t t . action ()) ;

}
}

}
}

On the Object Oriented Petri Nets Model Transformation into Java Programming Language 12 / 17

OOPN Supporting Techniques

Constraints

• constraints over OOPN allow, among others, to specify the
type of objects in places

• it is possible to generate the code more precisely

walking

r

r

testing
r isClearRoad.

t10

r go.

r

r

r

≥{Robot}

≥{Robot}

On the Object Oriented Petri Nets Model Transformation into Java Programming Language 13 / 17

OOPN Supporting Techniques: Constraints

class T 1 extends T r a n s i t i o n {
private PNObject r ;
public void action () {

r . send(”go”) ;
walking . put (r) ;

}
. . .

}

class T 1 extends T r a n s i t i o n {
private Robot r ;
public void action () {

r .go() ;
walking . put (r) ;

}
. . .

}

On the Object Oriented Petri Nets Model Transformation into Java Programming Language 14 / 17

Method Transformation

public PNObject m(PNObject p1) {
. . .
Place ret = new ReturnPlace () ;
. . .
// T r a n s i t i o n : : action −> ret . put (r e s u l t) ;
. . .
// Blocking method, waits fo r putt ing an object to the place
re tu rn ret . get () ;

}

On the Object Oriented Petri Nets Model Transformation into Java Programming Language 15 / 17

Conclusion

Present state

• We have implemented experimental simulator in Smalltalk
(not suitable for wider use).

• We have partial experimental implementations of
transformations into C++ and Java languages (done by our
master students)

Future work (in progress)

• Completion of the simulator and editor implementation in
Java.

• Completion of the code generation into Java including
optimization (typing, atomic components not requiring
threads, . . .).

• The goal is to create a comprehensive tool for modeling,
designing, and verifying software systems with the possibility
of direct deployment (with a lightweight version of the
virtual machine for running models) or direct transformation
into a programming language for more efficient running.

On the Object Oriented Petri Nets Model Transformation into Java Programming Language 16 / 17

[plain]

Thank you for your attention!

