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Motivation

Simulation-Based Design

• reduce the gap between real needs and specified needs
to sofware system under development

• combination of semi-formal and formal models

• formal and executable models showing a sketch of the
system to help visualize what the system will do

Model continuity

• elimination of the overhead caused by creating models at
different level of abstraction

• continuous incremental development of models

• models can work in live system

• no need of implementation or code generation
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Basic requirements for software design

Points that have to be met to create the correct and reliable
software system

1 understand the goals of the software project and precisely
specify the specific requirements whose implementation
meets the declared objectives

2 validate that the requirements specification is in line with
the objectives

3 based on a validated specification, create a system design
that reflects the conditions of a particular implementation
environment

4 verify that the system design complies with the
requirements

5 implement the verified design

6 verify that implementation is consistent with the design

7 verify accuracy and reliability of implementation under real
conditions
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Model-Continuity

Requirements model System model System implementation

use-cases

 use-case
realization

simulation simulation

behavior

structure
source 
 code

     other
components

• design models complement and extend each other in the
development process

• no need to transform or create new models

• if the nature of the resulting application permits, it is
possible to maintain the models in the target system
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Basic requirements for software design

How to meet points 5, 6, and 7 (implementation and
verification)

• at the end, we have functional models that fully reflect the
system requirements

• these models can serve as implementation models, i.e.,
become part of the target system

• if this is inappropriate or impossible (e.g., for performance
reasons], we must implement or exploit
the ability to generate code

• consistency with the design does not need to be checked,
as the same set of models is still being developed
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Why Petri nets?

Formalism of OOPN (Object-Oriented Petri Nets)

⇒ clear formal syntax

⇒ clear semantics

⇒ usable by developers having no power mathematical
backgroud

Petri Nets Models

• we could use Petri nets in the same way with no need to
get executable form

• Petri nets are also a simulation model

• Petri nets can be executed in real environment

• Petri nets are formal, can be transformed
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OOPN Model Example
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• classes, object nets, method nets

• nets: places and transitions

• a transition ≈ a component that can be instantiated (fired)
multiple times for different variable bindings
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Basic Concepts of Transformation

Element Transformation

• OOPN class ≈ Java class
• object net ≈ constructor
• method net ≈ method
• place ≈ a special Java class
• transition ≈ an instance (component) of the special Java

class

Example of the OOPN class C1:

a >= 10

code1

a < 10

code2

t1 t2

p11 p1

p2

a ab

y z

5, 1510
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Basic Concepts of Transformation

public class C1 extends PN {

protected Place p11;

protected Place p1;

protected Place p2;

public C1() {

p11 = new Place(this);

p1 = new Place(this);

p2 = new Place(this);

class T_1 extends Transition { ... }

T_1 t1 = new T_1();

class T_2 extends Transition { ... }

T_2 t1 = new T_2();

t1.precond(p11, p1);

t2.precond(p1);

p1.add(5;

p1.add(15);

p11.add(10);

}

}
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Basic Java Classes for Transformation

OOPN is typeless

• the interface PNObject is the common type for all variables
(objects)

• message passing is done specially (the method send)
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Transition as a Component

class T 1 extends T r a n s i t i o n {
private PNObject a ;
private PNObject b ;
public boolean guard ( ) {

// guard1 : a >= 10
i f (p11 . isEmpty ( ) ) re tu rn fa lse ;
i f (p1 . isEmpty ( ) ) re tu rn fa lse ;
a = p1 . s a t i s f y ( (o) −> o . send( ”>=” , 10) ) ;
i f (a == n u l l ) re tu rn fa lse ;
b = p11 . remove( ) ;
p1 . remove(a) ;
re tu rn true ;

}
public void action ( ) {

// code1: y = a + b
PNObject y = a. send( ”+” , b) ;
p2 . put ( y ) ;

}
public T r a n s i t i o n copy ( ) {

T 1 t = new T 1 ( ) ;
t .a = a;
t .b = b;
re tu rn t ;

}
}
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Component Execution

When an object is added to a place

• all connected transitions (components) are checked for
fireability

• if the transition can be fired (its guard returns true)
• a copy of the component is created
• the copy is executed in the different thread (throught the

executor)

void add(PNObject obj ) {
synchronized ( monitor ) {

Integer c = content . get ( obj ) ;
c = (c != n u l l ) ? c + 1 : 1 ;
content . put ( obj , c) ;
f o r ( T r a n s i t i o n t : observers ) {

i f ( t . guard ( ) ) {
T r a n s i t i o n t t = t . copy ( ) ;
PNSystem . execute ( ( ) −> t t . action ( ) ) ;

}
}

}
}
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OOPN Supporting Techniques

Constraints

• constraints over OOPN allow, among others, to specify the
type of objects in places

• it is possible to generate the code more precisely

walking

r

r

testing
r isClearRoad.

t10

r go.

r

r

r

≥{Robot}

≥{Robot}
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OOPN Supporting Techniques: Constraints

class T 1 extends T r a n s i t i o n {
private PNObject r ;
public void action ( ) {

r . send( ”go” ) ;
walking . put ( r ) ;

}
. . .

}

class T 1 extends T r a n s i t i o n {
private Robot r ;
public void action ( ) {

r .go( ) ;
walking . put ( r ) ;

}
. . .

}
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Method Transformation

public PNObject m(PNObject p1) {
. . .
Place ret = new ReturnPlace ( ) ;
. . .
// T r a n s i t i o n : : action −> ret . put ( r e s u l t ) ;
. . .
// Blocking method, waits fo r putt ing an object to the place
re tu rn ret . get ( ) ;

}
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Conclusion

Present state

• We have implemented experimental simulator in Smalltalk
(not suitable for wider use).

• We have partial experimental implementations of
transformations into C++ and Java languages (done by our
master students)

Future work (in progress)

• Completion of the simulator and editor implementation in
Java.

• Completion of the code generation into Java including
optimization (typing, atomic components not requiring
threads, . . . ).

• The goal is to create a comprehensive tool for modeling,
designing, and verifying software systems with the possibility
of direct deployment (with a lightweight version of the
virtual machine for running models) or direct transformation
into a programming language for more efficient running.
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