

THE FIRST INTERNATIONAL CONFERENCE ON IOT-AI

DECIPHERING BRAND IDENTITY FROM PACKAGE: VISUAL FEATURE ANALYSIS THROUGH CONVOLUTIONAL NEURAL NETWORKS

A. SHIMOJO and S. URATANI

Presenter: Asaya SHIMOJO

Konica Minolta, Inc.

asaya.shimojo@konicaminolta.com

June 30 to July 04, 2024

@Porto, Portugal

Giving Shape to Ideas

Asaya SHIMOJO

asaya.shimojo@konicaminolta.com

Professional Experience:

- Researcher at Konica Minolta, Inc. (Data Science)
- Ph.D. candidate at Nagoya University, Japan (Cognitive Science)

INTRODUCTION

Problem

Many cases of product packaging renewal resulting in a loss of that product's identity and a drop in sales

→ Because design elements that contribute to the identity of the product brand have been changed and the identification rate has declined

[Previous study]

- Recent advancements in AI technology have enabled the creation of CNN models that can learn and classify package images of specific brands.
- Notably, brand identification using CNN has been validated in studies involving brand logos and fashion show runway photos [1][2]
- Grad-CAM (Gradient-weighted Class Activation Mapping) is a technique that visualizes as a heat map the image regions that the model focuses on during classification. This facilitates model interpretation [3][4]
- However, it does not directly indicate the areas of attention that a human consumer pays attention to when identifying a package; comparisons of AI models' regions of attention with human visual attention have not been well validated [5]

INTRODUCTION

Experiment 1

Multi-class Classification Model based on VGG16

- 1. Data Collection and Preprocessing
- 2. Model Training and Validation
- 3. Performance Evaluation

Model Construction

Experiment 2

The Alignment between Human and the Model Attention Regions

- 1. Psychological Experiment for Collecting Eye-tracking Data
- 2. Heatmap Generations
- 3. Comparison between Human and AI Visual Attention

Model = Human?

Experiment 3

Filter Analysis and Ablation Study

- 1. Extracting and Analyzing Filters
- 2. Ablation Study
- 3. Analyzing the degree of Filter's Contribution on Model Decisions

Contribution areas

EXPERIMENT 1: What does the model look for in a package to make a decision?

[Model construction]

Build a model that, given an input package image, classifies with high accuracy which of the brands A~E it corresponds to.

Data Collection and Preprocessing

Collect 6,000 package images from Google for 5 stationery brands.

* Only those works for which the copyright has expired.* The brand name were masked.

e.g., Brand A's Packages

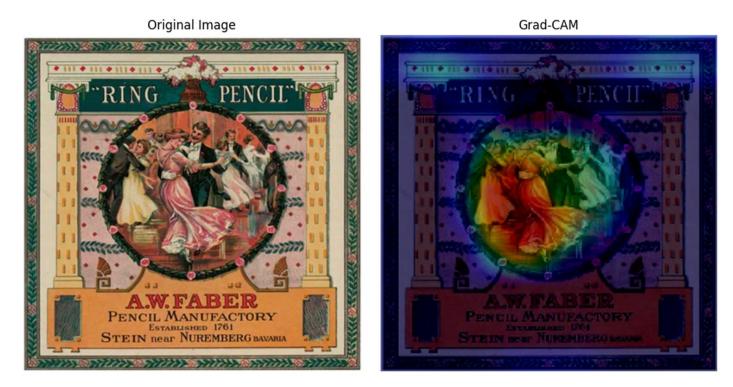
\times <u>5 brands</u> = 6000 packages

- Brand A: Luxury brand
- Brand B: Luxury brand
- Brand C: Mass-market brand
- Brand D: Mass-market brand
- Brand E: lesser-known brand

Model Training and Validation

- Model:
 - VGG16 pre-trained on ImageNet
 - Output size of the final layer adjusted to 5 to classify brands A through E
- Dataset:
 - 70% of the dataset for training
 - 30% of the dataset for validation
- Training and Validation:
 - Conducted 2,000 times
 - The data was shuffled each time
 - With a batch size of 32 and 10 epochs

 \rightarrow a validation accuracy of 91%



[Grad-CAM]

To identify CNN visual attention when recognizing the brand of a package

The model used for classification is finally converted into 4,096 features by convolving in 5 layers, so it is difficult for the human eye to know what is contributing to the classification result, The **Grad–CAM** method makes it somewhat easier for humans to recognize.

Experiment 1

Multi-class Classification Model based on VGG16

- 1. Data Collection and Preprocessing
- 2. Model Training and Validation
- 3. Performance Evaluation

Model Construction

Experiment 2

The Alignment between Human and the Model Attention Regions

- 1. Psychological Experiment for Collecting Eye-tracking Data
- 2. Heatmap Generations
- 3. Comparison between Human and AI Visual Attention

Model = Human?

Experiment 3

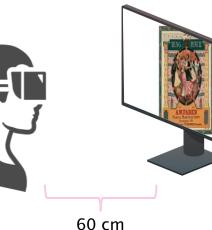
Filter Analysis and Ablation Study

- 1. Extracting and Analyzing Filters
- 2. Ablation Study
- 3. Analyzing the degree of Filter's Contribution on Model Decisions

Contribution areas

[Human eye-tracking]

To identify human visual attention when recognizing the brand of a package


- Participants

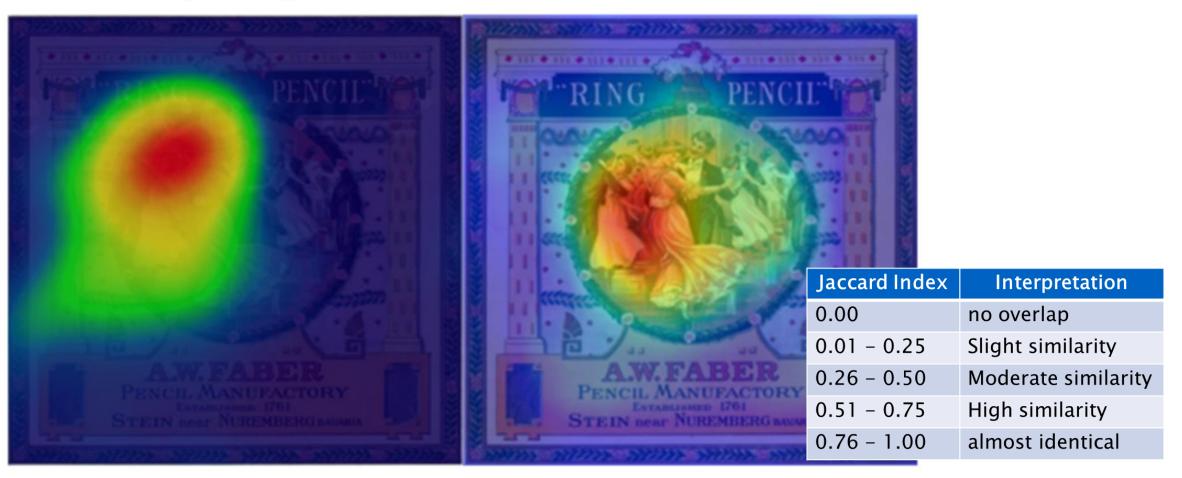
6 Adults 2 female and 4 males (39.8 \pm 7.9 years) having normal visual acuity.

Procedure

Looking at a package, participants:

- 1. Identified which brand from A to E the package belonged to
- 2. Rated their confidence level in that classification (0–100%)

× 10 times for learning each brand's VIs


× 20 times for classifying packages

Eye movements were recorded during only the classification process.

Eye-tracking

Average heatmap agreement between the two exceeds 0.32. \rightarrow Attention areas of humans and models were found to match to some extent

Experiment 1

Multi-class Classification Model based on VGG16

1. Data Collection and Preprocessing

- 2. Model Training and Validation
- 3. Performance Evaluation

Model Construction

Experiment 2

The Alignment between Human and the Model Attention Regions

- 1. Psychological Experiment for Collecting Eye-tracking Data
- 2. Heatmap Generations

3. Comparison between Human and AI Visual Attention

Model = Human ?

Experiment 3

Filter Analysis and Ablation Study

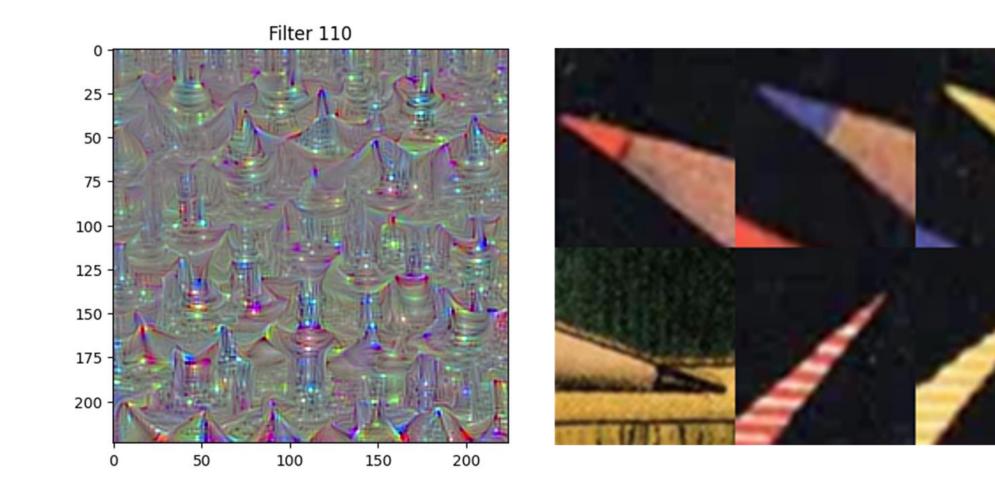
- 1. Extracting and Analyzing Filters
- 2. Ablation Study
- 3. Analyzing the degree of Filter's Contribution on Model Decisions

Contribution areas

[The aim of Experiment 3]

To analyze the visual information processing of the CNN model and identify design elements that contribute to Brand A's brand identity

Procedure


1. Filter Visualization:

The filters in the middle layers of the CNN model were visualized to identify the visual elements the model focuses on when recognizing Brand A.

2. Ablation Study:

An ablation study was conducted to assess the contribution of each filter to the model's performance. This involved systematically disabling individual filters and observing the impact on the model's classification accuracy.

[Findings]

- We confirm that the machine learning model can identify important design elements in brand recognition.
- In addition, visualization using Grad-CAM showed partial agreement between the visual recognition of humans and machine learning models.
- This will contribute to the quantitative management of brand identity and the development of effective packaging design strategies.

[Future works]

- However, while Grad-CAM is an effective method of highlighting important areas, it tends to be biased toward visually prominent areas.
- Further experimentation and expansion of the data set are needed to generalize the results.

