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On Software Migration - Why

When technology on which the system is developed is no longer supported
When it becomes too pricey and resource-consuming to support

When the system does not correspond to the renovated business processes
When the system cannot be integrated with modern tools

Laws of software evolution of Manny Lehman
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On Software Migration - approaches
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On Normalized Systems
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Use Case: Connecting Expertise - context

Connecting Expertise offers a job matching platform (called CE)
Used by companies who need resources (job seekers) and those who offer resources (job suppliers)

CE required a major upgrade because:
- New user cases: APl based integration with systems of the job seekers and suppliers

But facing increasing difficulties in extending their current platform because:

- Issue with code quality (lack of standards, duplication, tight coupling, lack of tests etc.)
- Issue with code complexity making end-to-end testing complex

- Issues with naming conventions

- Issues with scalability
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Use Case: Connecting Expertise — migration approach

Phased approach in combination with Chicken Little Migration Methodology

Improve anthropomorphism

Apply NS principles

Integration Migration in the Expansion
Remove the Integration via Expansion
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Use Case: Connecting Expertise — migration approach

Integration Migration in the Expansion

Remove the Integration via Expansion
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Use Case: Connecting Expertise — Value of NS

New version of CE (CE3), has a state of the art, NS compliant architecture.
CE will become, gradually, a fruly agile system.

Anthropomorphic approach to naming of objects increases code readability and decreases complexit

The major drawback of the phased approach (Chicken Little) — gateway complexity — is reduced
due to the intfegration of the gateways in the expansion templates (transformers).

Gateways can be easily removed via re-expansion, remove all fraces from legacy.




