Using Normalized Systems Expansion to
Faclilitate Software Migration - a Use Case

Christophe De Clercqg
Jan Verelst

Using Normalized Systems Expansion to Facilitate Software Migration - a Use Case

On Software Migration - Why

When technology on which the system is developed is no longer supported
When it becomes too pricey and resource-consuming to support

When the system does not correspond to the renovated business processes
When the system cannot be integrated with modern tools

Laws of software evolution of Manny Lehman

Continuous Increasing Growth in Declining Hidden
Change Complexity Features Quality Feedback

Using Normalized Systems Expansion to Facilitate Software Migration - a Use Case

On Software Migration - approaches

Database First Database Last Composite Chicken Little Big Bang Butterfly
database Strategy Methodology Methodology

leqo]

AppP ApPpP Both Composite From o)
A

migrated migrated directions functionality Neifelfelg
incrementally first

Using Normalized Systems Expansion to Facilitate Software Migration - a Use Case
On Normalized Systems

)|
SAPEUE 1 G Data Version Transparency fnon version Separation of States
Transparenc
SEEEE C Aene without impacting the P Y each step

driver separated from - Without impacting th in ti
input or output P g e separated in time
other concerns P 2 calling components P

Requirements are converted

into n instances of each element ! “ “ ! “

] NS appljcétion =
Build .
n instances of elements

XML Model

Using Normalized Systems Expansion to Facilitate Software Migration - a Use Case

Use Case: Connecting Expertise - context

Connecting Expertise offers a job matching platform (called CE)
Used by companies who need resources (job seekers) and those who offer resources (job suppliers)

CE required a major upgrade because:
- New user cases: APl based integration with systems of the job seekers and suppliers

But facing increasing difficulties in extending their current platform because:

- Issue with code quality (lack of standards, duplication, tight coupling, lack of tests etc.)
- Issue with code complexity making end-to-end testing complex

- Issues with naming conventions

- Issues with scalability

APPLICATIE ARCHITECTUUR

SECURITY

SOFTWARE QUALITY B
0 (B)

30 40 S0 60 70 80 90
ore

Using Normalized Systems Expansion to Facilitate Software Migration - a Use Case

Use Case: Connecting Expertise — migration approach

Phased approach in combination with Chicken Little Migration Methodology

Improve anthropomorphism

Apply NS principles

Integration Migration in the Expansion
Remove the Integration via Expansion

accesses: .

accesses :

d_a1_CE3/CE2

d_a2_CE3/CE2

aggregation d_a3_CE3/CE2 d_b_CE3

Using Normalized Systems Expansion to Facilitate Software Migration - a Use Case

Use Case: Connecting Expertise — migration approach

Integration Migration in the Expansion

Remove the Integration via Expansion

d A CE2

get(), set() - a1’

get(), set() - a3'

. (3) read data
. from CE2 DB

Database CE2

get(), set() - a2' [© .

(2) get data from CE2

N .. (2) get data from CE2

"+ (2) get data from CE2" "+,

Temp migration
Component

£]

(1) get data

uu v ww Log
TRANS d_a1_CE3/CE2 Mon
get()
XX Sl Fac
[\%% Author TAuthen Percist]

vv

ww

d_a2_CE3/CE2

TRANS Mon
get()
XX set() Fac
[vy AuthorIAulhen Percist
uu w ww Log
TRANS d_a3_CE3/CE2 Mon
get()
XX ST Fac
[yy Author | Authen Percist]

: (4) set data

w I ww Log
uu
d_a1_CE3
1 get) Men
XX set() Fac
yy AuthorIAuthen Percist

v ww Log
uu
d_a2 _CE3
Mon
get()
XX set() Fac
vy AuthorIAuthen Percist
L
l w wv ww og
d_a3_CE3
== Mon
1 get()
XX set() Fac
[yy AuthorIAuthen Percist

—
.
.
B
.
.
.
.
.

(5) Percist data
*, inCE3DB

Database CE3

Using Normalized Systems Expansion to Facilitate Software Migration - a Use Case

Use Case: Connecting Expertise — Value of NS

New version of CE (CE3), has a state of the art, NS compliant architecture.
CE will become, gradually, a fruly agile system.

Anthropomorphic approach to naming of objects increases code readability and decreases complexit

The major drawback of the phased approach (Chicken Little) — gateway complexity — is reduced
due to the intfegration of the gateways in the expansion templates (transformers).

Gateways can be easily removed via re-expansion, remove all fraces from legacy.

