
Agile & Architecture

Geert Haerens

Department of Management Information Systems
Faculty of Business and Economics

University of Antwerp, Belgium
Email: geert.haerens@uantwerpen.be

Enterprise Architect @ Digital and IT Consulting
Engie

Email: geert.haerens@engie.com

Abstract—The Agile & Architecture special track at Patterns
2024 aims at collecting knowledge on how to build truly agile
software systems, being systems that have the ability to change.
We have collected four papers that address different aspects
of agile architecture, including the comparison of the heuristic
method SOLID with the scientific-based software development
method of Normalized Systems (NS), a use case of evolvability of
an application built according to NS over a period of ten years,
a use case where NS is used to help software migration and agile
software factories.

Index Terms—Agile; Software Architecture; NS; SOLID; Soft-
ware Rejuvenation; Software Migration, Software Factory

I. INTRODUCTION

During his life, Marcus Vitruvius Pollio (85-20 BC) [1],
a Roman engineer, published about 10 books about ”Archi-
tectura”. For him, architecture is about applying three prin-
ciples: Firmita (strong, firm), Utilitas (useful, user-friendly),
and Venustat (aesthetic, beautiful). Since then, the concept of
architecture has extended beyond the construction of physical
structures. It is used in technologies and social structures.
The IEEE1471 standard [2] defines architecture as ”the funda-
mental organization of a system embodied in its components,
their relationships to each other and the environment, and the
principles guiding its design and evolution”. This definition
of architecture applies to many kinds of architecture, be it
physical, technical or sociological.

We focus on software architecture, where software systems
are made up of components that relate (interact) with each
other and interact with the environment (technical and socio-
technical (aka the users)). The software architecture should
include or be made in accordance with some principles that
guide the evolution of the software system. The software
architect is responsible for ensuring that the software has an
architecture that conforms to the requirements.

Today, software creation is dominated by the Agile ap-
proach. Agile, as a word, signifies the ability to move with
quick, easy grace and a resourceful and adaptive character [3].
As architecture is about the structure of a system and agility
is about the ability to change, we can say that an agile system

would have a structure that allows and facilitates change. Agile
architecture is thus a property of a system. A system must be
consciously defined to become agile, as it does not become
agile by itself.

Agile, in the context of software creation and delivery, is
inspired by the Agile Manifesto [4], which states:

We are uncovering better ways of developing software
by doing it and helping others do it. Through this work, we
have come to value:

• Individuals and interactions over processes and tools
• Working software over comprehensive documentation
• Customer collaboration over contract negotiation
• Responding to change over following a plan

Many Agile Methods have been developed based on this
manifesto, which aims to deliver software in small iterations
with quick stakeholder feedback compared to the waterfall
methodology [5], where the first piece of working software is
delivered after having gone through a big upfront design phase.
When looking at an agile methodology such as SCRUM, it
must be noted that the architect’s role is not mentioned. It
is assumed that the development team can absorb this role
completely and make the system according to requirements.
Recall that, based on the In the Agile Manifesto, requirements
will change; thus, the software will change over time. The
iterative nature of the agile software delivery method requires
the software to be able to change and thus exhibit agility as a
property. Otherwise, at some point, new requirements can no
longer be implemented or implemented within an interaction,
effectively killing the agile methodology.

The SCRUM method does not scale well. For creating large
systems, the Scaled Agile Framework, SAFe [6], is better
suited. SAFe recognizes the need for architectural oversight
and has defined different architectural roles for the purpose.
SAFe defines Agile Architecture as:

• Systems evolve over time while supporting the needs of
current users



• Avoid overhead and delays associated with phase-gated
processes

• Ensure Systems Always run
• Supports the continuous flow of value
• Balances intention architecture and emerging design
According to SAFe, Agile Architecture is about the pro-

cess/method of performing Architecture. It is no longer a
phase-gate process but a process focusing on the continuous
flow of value. What SAFe calls Agile Architecture is more
Agile Architecting, a process and guidance on how an architect
should behave, but includes little guidance on making a truly
agile system except for the need for intentional architecture.

The fundamental question that emerges is: how do we make
agile systems? How to make agility part of the intentional
architecture.

II. SUBMISSIONS

For this special track on Agile & Architecture, we have
collected four papers that are related to agile systems. One
paper compares two software development methodologies
aiming at creating agile systems. The second paper is a use
case of an application created with a method that promises
system agility, and the application’s evolvability is tracked
over ten years. A third paper is about the integration of system
agility during software migration. The fourth and last paper is
about extending the agility of the software system toward the
software factory, where applications are not only created but
also deployed to the working environment.

The first paper, by Gerko Koks [7], studies the convergence
between SOLID [8] and Normalized Systems [9] [10]. SOLID
is an acronym for five software design principles that deliver
a so-called Clean Architecture when combined in a certain
form. SOLID has been put forward by Robert C. Martin and
is extensively explained in his Clean Code book series. The
SOLID principles are known in the software development
community and frequently serve as guidelines for software cre-
ation. Following the SOLID and Clean Architecture approach
will provide cleaner code, which is more easily adaptable and
thus provides the agility we seek. Normalized Systems theory
(NS) provides four theorems derived from system stability
and statistical entropy that aim to make software evolvable.
A software system is considered evolvable when a bounded
functional change leads to a bounded amount of work to
implement this change and is independent of the system’s
size. A system is considered non-evolvable when change
ripples through the system, making the amount of work for
a single functional change dependent on the system’s size.
This is called a Combinatorial Effect. In his paper, Gerco
Koks investigate to what extent the SOLID and NS principles
converge; what are the differences and similarities between
the two? The principles are compared, and the architecture
resulting from applying these principles is also compared.
The conclusion is that the SOLID principles can be mapped
to NS theorems but that SOLID lacks equivalent principles
for some of the NS principles. The same is true for the
resulting architecture. The conclusion is that applying SOLID

is valuable yet insufficient for an evolvable system, as not all
the NS theorems are covered.

The second paper, by Jan Verelst [11], studies the evolv-
ability of an application over ten years. The application has
been built in accordance with the NS principles using software
elements and software expansion. Software elements are the
architectural construct in which the NS principles are applied,
and software expansion ensures that the architectural code
skeleton is generated to ensure compliance with the NS
principles. Building applications this way provides evolvability
with respect to different axes of anticipated changes, such as
functional changes, changes to the elements and underlying
technological changes. Each time a change happens in these
dimensions, the software gets re-expanded, aka rejuvenated,
and promises not to introduce a CE in the code skeleton. The
paper tracks the different kinds of changes over 10 years and
tracks the rejuvenation effort. If NS lives up to its promise,
the rejuvenation efforts should be limited. The conclusion is
that major changes have happened to the application over
10 years, both functional and technological, but the effort
to implement these changes is small. This demonstrates that
building software systems with NS provides the agility we
seek.

The third paper, by Christophe De Clercq [12], is a software
migration use case where NS is used to create the target
application and support the migration. The migration applies
a phased approach where certain functionalities are gradually
migrated from the source to the target application while keep-
ing the functionality accessible in the source and destination
until a pre-defined cut-over point. Such an approach requires
gateways between the target and source application and data
migration at the cut-over point. Classically, such gateways are
delicate pieces of software that easily break, are difficult to
maintain, and require removal from the target system after
the cut-over point. By considering the need for gateways as
a cross-cutting concern and integrating it into the expand-
able software elements, the maintenance of the gateways is
restricted to the templates and the rejuvenation capabilities’
use. After the final migration of the data from the source
to the target system, the gateways can be easily removed
by rejuvenating the application with element templates that
no longer include the gateway cross-cutting concern. On the
one hand, the new software is created with the NS principles
and expansion capabilities; on the other hand, NS helps
with migration. By doing so, the target system will exhibit
evolvability, and a high degree of flexibility (and evolvability)
will be provided during the migration phase.

The fourth and last paper, by Herwig Mannaert [13], con-
cerns evolvability in software factories. Today, the DevOps
[14] and the CI/CD philosophy are put forward as the default
method of linking development and production. The idea is
that the development and production people work together
and have a mutual understanding of the challenges they face
to take them into account in their respective domains, thus
improving the flow from software development to production.
Unfortunately, the philosophy is often reduced to an abstract



infinity sign and the usage of tools. Making software is hard.
Making a software factory will be even harder. The continuous
changes and proliferation of technologies and tools in the
CI/CD-pipeline do not help either. The paper put forward that
DevOps and CI/CD are cross-cutting concerns in the software
factory and should be treated as such. Having agile software
systems without an agile software factory is the same as having
a great product that cannot be shipped to where it is needed.

III. CONCLUSION

The four papers of this Agile & Architecture special track
on Patterns 2024 all relate nicely to the subject we wanted to
draw attention to: how to make agile systems. Gerco Koks’s
paper discusses the necessary conditions for agility (NS), and
he compares them with existing heuristical methods (SOLID).
A use case of rejuvenation, demonstrating agility, has been
discussed in Jan Verelst’s paper. Christophe De Clercq demon-
strated agility in a migration scenario, and Herwig Mannaert
showed us the direction toward evolving software factories.

REFERENCES

[1] Marcus Vitruvius Pollio on Wikipedia, [Online], Available:
https://en.wikipedia.org/wiki/Vitruvius, [retrieved: May, 2024].

[2] M. W. MAIER, D. EMERY, R. HILLIARD, ”ANSI/IEEE 1471 and
systems engineering. Systems engineering”, 2004.

[3] Agile on Websers Dictinairy, [Online], Available: https://www.merriam-
webster.com/dictionary/agile, [retrieved: May, 2024].

[4] Agile Manifesto, [Online], Available: https://agilemanifesto.org/, [re-
trieved: May, 2024].

[5] Waterfall method on Wikipedia, [Online],
https://en.wikipedia.org/wiki/Waterfall model, [retrieved: May, 2024].

[6] SAFe, [Online], https://scaledagileframework.com/agile-architecture/,
[retrieved: May, 2024].

[7] G. Koks, “Converging Clean Architecture with Normalized Systems”,
in Special Track: Agile & Architecture, along with PATTERNS 2024,
IARIA XPS Press, 2024.

[8] R. C. Martin, ”Clean architecture: a craftsman’s guide to software
structure and design”, London, England: Prentice Hall, 2018, OCLC:
on1004983973, ISBN: 978-0-13-449416-6.

[9] H. Mannaert, J. Verelst and P. De Bruyn, “Normalized Systems Theory:
From Foundations for Evolvable Software Toward a General Theory for
Evolvable Design”, ISBN 978-90-77160-09-1, 2016

[10] H. Mannaert, J. Verelst and K. Ven, “The transformation of requirements
into software primitives: Studying evolvability based on systems theo-
retic stability”, Science of Computer Programming, Volume 76, Issue
12, pp. 1210-1222, 2011

[11] J. Verelst, “Systematic Rejuvenation of a Budgeting Application over
10 years: A Case Study”, in Special Track: Agile & Architecture, along
with PATTERNS 2024, IARIA XPS Press, 2024.

[12] C. De Clercq, ”Using Normalized Systems Expansion to Facilitate Soft-
ware Migration - a Use Case”, in Special Track: Agile & Architecture,
along with PATTERNS 2024, IARIA XPS Press, 2024.

[13] H. Mannaert, ”Toward a Rejuvenation Factory for Software Land-
scapes”, in Special Track: Agile & Architecture, along with PATTERNS
2024, IARIA XPS Press, 2024.

[14] R. T. Yarlagadda, “Devops and its practices,” International Journal of
Creative Research Thoughts (IJCRT), vol. 9, no. 3, 2021, pp. 111–119.


