

Total Cost of Ownership: Cloud-based vs. Onboard Vehicle Software Components Daniel Baumann, Martin Sommer, Eric Sax, Falk Dettinger & Michael Weyrich SCALABILITY 2024

www.kit.edu

Bio

Daniel Baumann (M. Sc.)

- Studies in Electrical- and Information Engineering
- PhD Candidate at the Institute für Technik der Informationsverarbeitung (Institute for Information Processing Technology) At Karlsruhe Institute for Technology
- Project OTrace: Over the Air Communication for sustainable Energy Management of Fleets

ΠīV

Motivation

Vehicle has fixed hardware & software during production

- Limited capacity in terms of functionality, storage space and computing capacity
- Customers want vehicles that are state of the art and meet the driver's requirements
 - Currently, vehicle updates are only possible via OTA or workshop visits

→Expansion of the E/E architecture into the cloud
→But does it make sense from an economic point of view?

E/E Architecture

Architecuture of vehicles

E/E Architecture

Architecture for cloud-based SW

- Definition of cloud-based software component¹:
 - Vehicle application that runs temporarily or permanently in the cloud
 - Use of cloud capacities (computing and/or storage resources) instead of the vehicle's own capacities
 - Functions can use both data from the vehicle (e.g. sensors) and external data (e.g. weather service)

[1] F. Milani and C. Beidl, "Cloud-based Vehicle Functions: Motivation, Use-cases and Classification," 2018 IEEE Vehicular Networking Conference (VNC), Taipei, Taiwan, 2018, pp. 1-4, doi: 10.1109/VNC.2018.8628342.

Total Cost of Ownership

Definition

- Total Cost of Ownership (TCO) is a financial estimate of the total costs of a product over its entire service life
- TCO includes Capital Expenses (CapEx) and Operating Expenses (OpEx)

TCO = CapEx + OpEx

Total Cost of Ownership

TCO Model for onboard vs. cloudbased SWC

Onboard SWC

Cloudbased SWC

Results of the total cost of ownership mode

Case study of an SWC for the setpoint temperature specification of a heating, ventilation and air conditioning system (HVAC) for a city bus

ТСО	Onboard SWC	Cloudbased SWC
Development	200.000€	180.000€
Deployment	30€ per ECU	0€
Execution	1€/month	2,49€/month

 \rightarrow Outsourcing to the cloud makes sense

TCO Reduction Options

- 1) Saving of a complete ECU in an existing E/E architecture
- 2) Downsizing of an ECU in an existing E/E architecture
- 3) The cloud as a new execution platform alternative for new E/E architectures

- Cloud Computing in the automotive sector is becoming increasingly important
- Downsizing a current ECU by moving SWC to the cloud only has a small financial effect
- The most likely use case: the cloud as a new execution platform
- While comfort functions are not considered safety-critical
 - \rightarrow network failures can still result in a negative user experience

Conclusion and Future Work

- Approach to gain an overview of the costs to be expected when applying a cloud or an onboard SWC
- Three cost reduction options
- Cloud based vehicle functions are becoming increasingly important

Validate the model with additional case studies

Questions?

Daniel Baumann – daniel.baumann@kit.edu

