

A.(= = =

a: Y) LBAS.

The Eighteenth International Conference on Emerging Security Information, Systems and Technologies

(d) clantion = Ch

SECURWARE 2024 a X(=) = = c, a() =, od(=f)=)); $A \Rightarrow (Hax = a))$ as (chistOton=(120)) = (csc) outstandand of a assessment of the second of

ALEXANDER LAWALL

Securing Enterprise Applications:

Security Models and Adaptive Access Control for Consistent Access Rights in Dynamic Environments

Keynote Nice, November 2024

PROF. DR. ALEXANDER LAWALL

Academic Roles

- Program Director, B.Sc. & M.Sc. Cyber Security and Cyber Security Management
- Professor in Cyber Security (Distance & On-site Learning)

Expertise

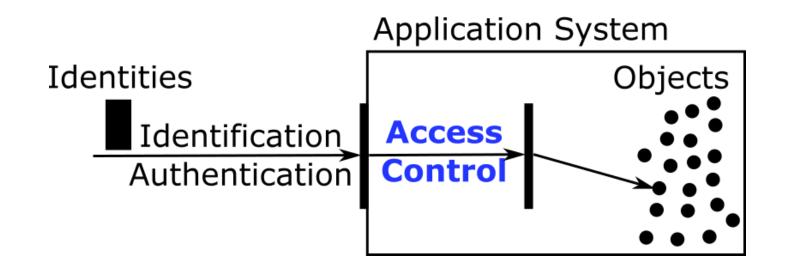
- System & Network Security
- Web Application & Cloud Security
- IoT and Industrial IT Security

Professional Affiliations

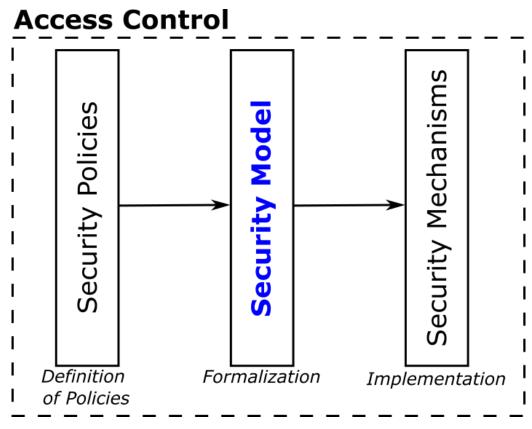
- Leadership Committee, "Management of Information Security" (Society for Informatics, GI)
- Professional Lead, "Security & GRC in IT" (Summit Leipzig)
- Member, Association of Cyber Forensics and Threat Investigators (ACFTI)
- Member, Zentrum Digitalisierung Bayern (ZD.B)

Research & Publications

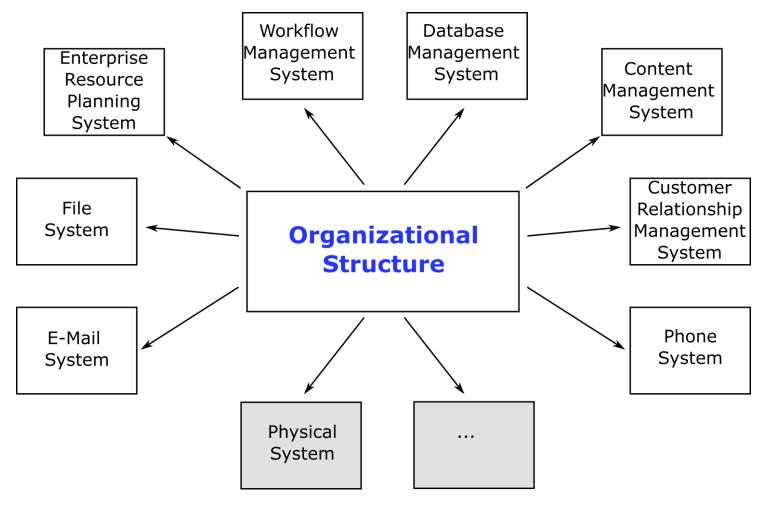
- Focus Areas: Cyber Security, Information Security, Industry 4.0/5.0, IoT, Rights Management
- Publications in national/international Journals and Conferences
- Keynote Speaker, Program Chair, Panel Expert of International Conferences


AGENDA

Introduction and Research Subject	1
Problem Statement, Research Goal & Questions	2
Development of the Artefact ($C ext{-}O\mathcal{R}\mathcal{G}$)	3
Conclusion	4


Access Control & Permissions

[cf. Seufert 2002 & Moschgath 2003]


Phases of Access Control

[cf. Hansen, Mendling and Neumann 2015]

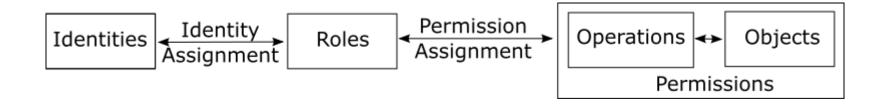
Basis of Security Models

[cf. Ferraiolo, Kuhn and Chandramouli 2003; Hildmann 2010 & Goldstein and Frank 2012]

Direct Assignment of Identities

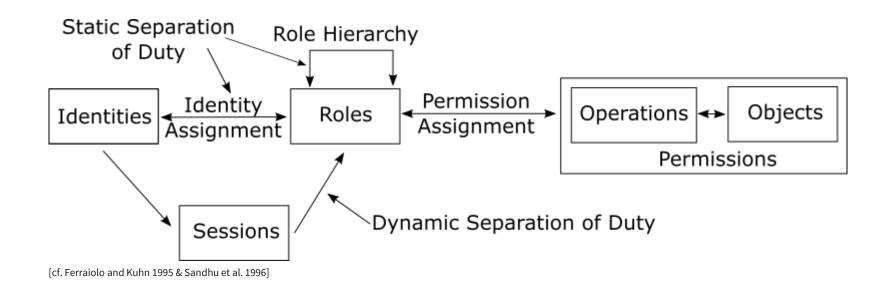
Objects Identities	Object 1	Object 2	•••	Object n
Identity 1	Operations	Operations	•••	Operations
Identity 2	Operations	Operations	•••	Operations
• • •	•••	•••	•••	•••

[cf. Bell and La Padula 1976; Sandhu 1992 & Ferstl and Sinz 2013]

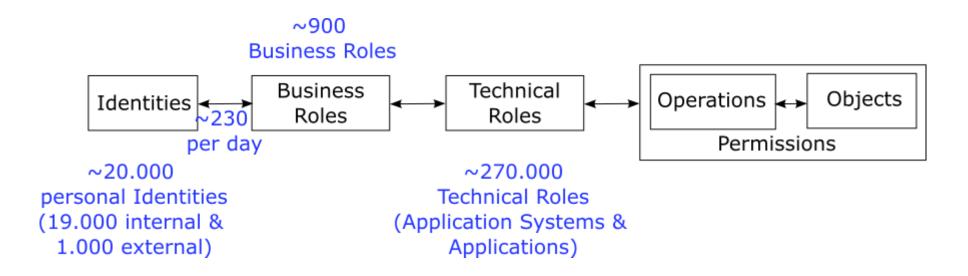


Direct Assignment of Identities

Objects Identities	File Report	Table Salary	•••	Workflow Order
Meier	{read, write}	{insert, change}	•••	{create, execute}
Lawall	{read}		•••	{execute}
• • •	•••	•••	•••	•••


Role-based Assignment of Identities (RBAC)

[cf. Ferraiolo and Kuhn 1995 & Sandhu et al. 1996]



Role-based Assignment of Identities (RBAC)

(Enterprise) Role-based Assignment of Identities (ERBAC)

Attribute-based Assignment of Identities (ABAC)

Attributes

- User Attributes (who is accessing the resource)
 - Job title (e.g., doctor, nurse, admin)
 - Department (e.g., cardiology, pediatrics)
 - Clearance level (e.g., high, medium, low)
- Resource Attributes (the data/resource being accessed)
 - Data sensitivity (e.g., confidential, restricted)
 - Record type (e.g., patient notes, lab results)
- Environmental Attributes (conditions for access)
 - Time of access (e.g., business hours only)
 - Location (e.g., access allowed only on hospital premises)
 - Emergency status (e.g., relaxed rules during emergencies)

[cf. Batth et al. 2021)

PROBLEM STATEMENT, RESEARCH GOAL & QUESTIONS

Core Problem: Inconsistent Assignment of Identities

Partial Problem 1 (PP1): Assignment through Full Enumeration

High susceptibility to changes

cf. Herwig and Schlabitz 2004, p. 290 & Linkies and Off 2006, p. 22

Partial Problem 2 (PP2): Variety of Variants (structural-organizational and application-specific influencing factors)

Partial Problem 3 (PP3): Inadequacy (capability of the meta-model and relevance of the model)

Maintenance-intensive assignment of identities and discrepancy with reality

cf. Feng et al. 2004, p. 357; Strembeck and Neumann 2004, p. 393; Vahs 2007; Sinz et al. 2012; Eymann 2013

Key Consequences of Organizational Changes (Hiring, Moving, and Departure of Identities)

- Anomalies in Access Rights/Permission
- Violations of Security Policies
- Lack of Compliance

PROBLEM STATEMENT, RESEARCH GOAL & QUESTIONS

Research Goal: Development of a *meta-model for intra- and inter-organizational structures* and the *declarative* assignment of identities in business application systems

RQ1: What elements are required for a structural-organizational meta-model?

RQ2: How are organizational identities declared in business application systems?

RQ3: What impact does the structural-organizational meta-model, including the declarative query language, have on maintenance effort?

RQ4: To what extent can change-related issues (e.g., anomalies, inconsistencies) in business application systems be reduced?

RQ5: Is the meta-model with the query language practically implementable?

(Meta-)Model for Organizational Structures

Entity Types (+ Attribute Types $\mathcal{ATT}_{\text{[cf. Lawall et al. 2015]}}$

Organizational Units

- lacksquare at the template level [cf. Lawall et al. 2014c]
- O (intra-organizational Oⁱ & inter-organizational O^e) [cf. Lawall et al. 2014a]

Functional Units

- $m{\mathcal{F}}^{\mathcal{T}}$ at the template level [cf. Lawall et al. 2014c]
- F (intra-organizational Fi & inter-organizational Fe) [cf. Lawall et al. 2014a]

Identities (personnel & machine-based)

• A (intra-organizational Aⁱ & inter-organizational A^e) [cf. Lawall et al. 2013a; Lawall et al. 2014a]

Relationship Types (+ Attribute Types \mathcal{ATT})

Structural Relationships \mathcal{R}_s (primary and secondary organization) [cf. Lawall et al. 2014a, Lawall et al. 2014c, Lawall et al. 2014, Lawall et al. 2015]

Organization-Specific Relationships \mathcal{R}_{0} (reporting, supervisor, deputy relationships) [cf. Lawall et al. 2014a, Lawall et al. 2014c]

User-Defined Relationships \mathcal{R}_{u} [cf. Lawall et al. 2014a, Lawall et al. 2014c, Lawall et al. 2014d]

Extensional Relationships $\mathcal{R}_{_{\!P}}$ [cf. Lawall et al. 2014c]

Permission-Specific Relationships \mathcal{R}_{p} (+ $\mathcal{L}_{\mathcal{M}}$) [cf. Lawall et al. 2014, Lawall 2015]

(Meta-)Model for Organizational Structures

Knowledge Hierarchy [cf. Lawall et al. 2014c]

 $O^{\mathcal{T}}_{\text{kl4}}, \mathcal{F}^{\mathcal{T}}_{\text{kl4}}$ (template level)

O_{kl3} (organizational units level)

F_{kl2} (functional units level)

A_{kl1} (identities level)

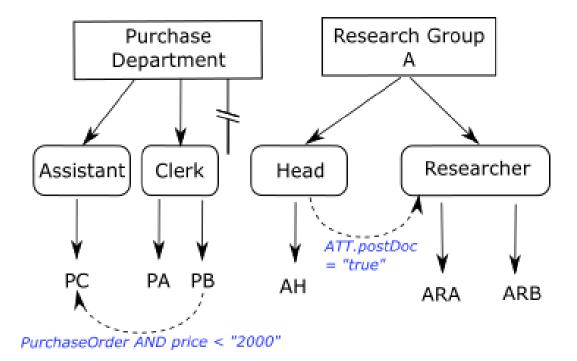
Prioritization of Identities [cf. Lawall et al. 2014c]

Knowledge Hierarchy of the Organizational Model ("Level Algorithm")

Limitation of Validity of Relations

Predicates on Relations ($\mathcal{L}_{\mathcal{P}}$) [cf. Lawall et al. 2014a, Lawall et al. 2014d]

Functional Unit Dependent Restrictions

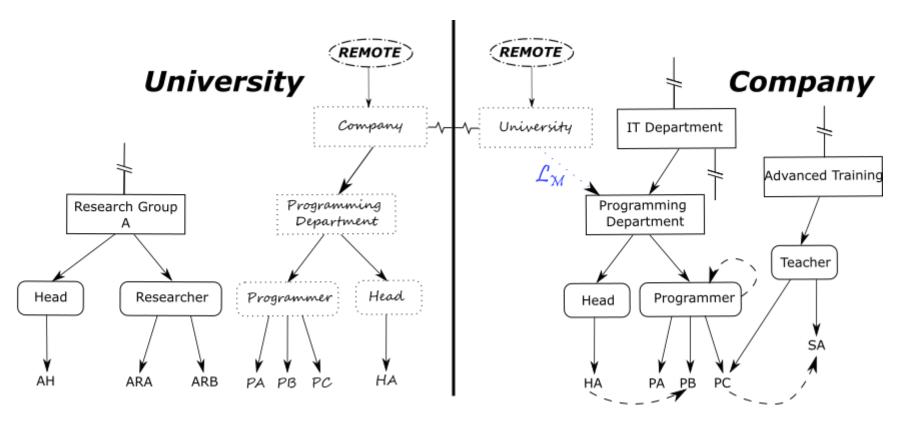

■ Hyperedge on Functional Unit from $r \in \mathcal{R}_0$ and $r \in \mathcal{R}_u$: $r = (A_1, A_2)$ with $A_1 \neq A_2$ or $A_1 = A_2$, respectively, or r = (A, F) [cf. Lawall et al. 14a]

INTERNATIONAL UNIVERSITY OF APPLIED SCIENCES

Language for Predicates ($\mathcal{L}_{\mathcal{P}}$)

Restriction of the Validity of Relations \mathcal{R}_{o} , \mathcal{R}_{u} [cf. Lawall et al. 2014a , Lawall et al. 2014d]

Context from Application System (CONTEXT from $\mathcal{L}_{\mathcal{A}} \equiv \mathcal{L}_{\mathcal{P}}$)
Parameters from Application System (WITH clause in $\mathcal{L}_{\mathcal{A}}$ (\equiv) $\mathcal{L}_{\mathcal{P}}$)
Attribute (in the Organizational Model)



Language for Model Elements ($\mathcal{L}_{\mathcal{M}}$)

Expressions on Relations $\mathcal{R}_{\mathbf{p}}$ [cf. Lawall et al. 2014]

Propagation of Model Elements (including inter-organizational structures)

Example: $\mathcal{L}_{\mathcal{M}}$ = ENT.0 OR ENT.F OR ENT.A OR REL.Structural OR ATT.name

INTERNATIONAL UNIVERSITY OF APPLIED SCIENCES

Declarative Query Language ($\mathcal{L}_{\mathcal{A}}$) [Excerpt]

Declaration of Identities based on

Entities/Identities (e.g., "Lawall")
Relationships (e.g., <u>SUPERVISOR OF</u> (Researcher(Security)))
Attributes (e.g., Researcher(*).<u>ATT.postdoc</u> = "true")

Consideration of the Acting Functional Unit

Explicit: A AS F, e.g., "Lawall" <u>AS Lecturer</u>
Implicit: i.e., F(O), e.g., <u>Researcher</u>(Security)

Separation of Duty (e.g., Researcher(Security) NOT <Requester>)

Parameters from Application Systems (e.g., Researcher (Security) WITH price="20")

Prioritization of Identities

- FALLBACKTO: e.g., Researcher(Security) <u>FALLBACKTO</u> Head of(Security)
- Configuration of the Knowledge Hierarchy Levels, e.g., <u>DEGREE</u> = 0,F; <u>DEGREE</u> != 0

Combination of Language Expressions (i.e., AND | OR)

Application Scenarios

Definition of Access Rights

Objects Identities	Object 1	Object 2	•••	Object 3
President(University X) OR Professor(*)	{read, write}	{insert, change}	•••	{create, execute}
• • •	•••	•••	•••	•••

Definition of Actors/Task Carriers

Application Scenarios

Definition of Recipients (e.g., functional mail addresses)

researcher-RG-security@uni.org

→ Researcher(Security)

apprentice-year-2@company.com

→ Apprentice(*).ATT.(Now() - Startdate) = "2"

Definition of Content

Attribute	Value
name	ATTRIBUTE name OF Head(Security)
email	ATTRIBUTE email OF Head(Security)
•••	•••

Identification of Identities in the Organizational Model

Research Group $\mathcal{L}_{\mathcal{A}}$ from Application System: Head(Research Group Cybersecurity) Researcher Head WITH CONTEXT = "Teaching" Research Group Research Group AIS Cybersecurity Researcher Researcher HiWi Head Lecturer Head Dean ATT.postDoc = "true"Shadow Miller Meier Ron Gordan Smith Lawall Organisational Unit Identity Functional Unit **Entities** Structural Relation Deputyship Supervisor Relations

CONCLUSION

Summary

(Meta-)Model & Formal Languages

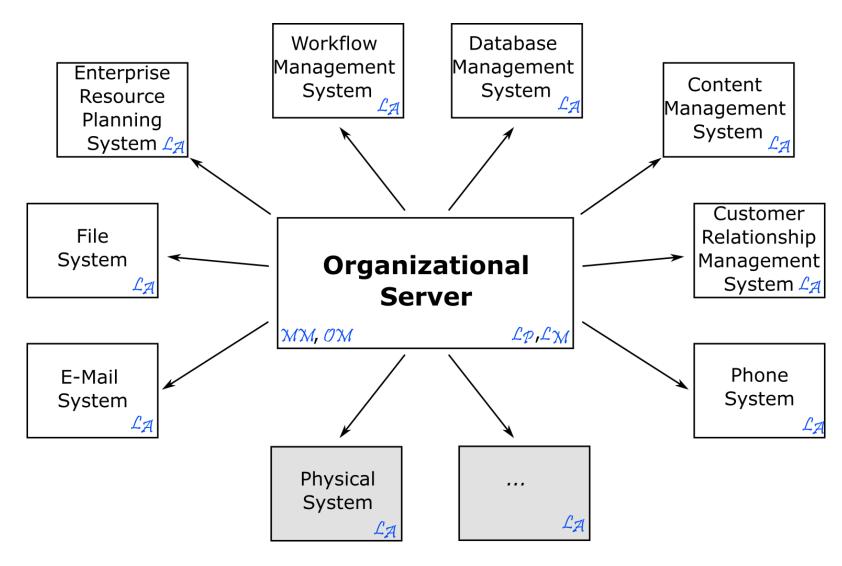
- Representation of Organizational Structures (intra- & inter-organizational) [Meta-Model, Language for Predicates $\mathcal{L}_{\mathcal{P}}$, Language for Model Elements $\mathcal{L}_{\mathcal{M}}$]
- Consistent Assignment of Identities
 [Declarative Query Language $\mathcal{L}_{\mathcal{A}}$]

RQ1: What elements are required for a structural-organizational meta-model?

RQ2: How are organizational identities declared in business application systems?

RQ3: What impact does the structural-organizational meta-model, including the declarative query language, have on maintenance effort?

RQ4: To what extent can change-related issues (e.g., anomalies, inconsistencies) in business application systems be reduced?


RQ5: Is the meta-model with the query language practically implementable?

- No maintenance effort in application systems in case of organizational changes (join, move, leave of identities)
- Consistent Access Rights (i.e., Task Assignments, Recipients, Content)
- No violations of Security Policies

CONCLUSION

INTERNATIONAL UNIVERSITY OF APPLIED SCIENCES

(New) System Landscape

Discussion with

PARTICIPANTS(*)

Prof. Dr. Alexander Lawall <u>alexander.lawall@iu.org</u>