
Validating Damage Assessment: A Simulation-Based Analysis of
Blind Write Lineage in Fog Computing
Mariha Siddika Ahmad and Brajendra Panda

Presented by

Mariha Siddika Ahmad

Electrical Engineering and Computer Science
Department

University of Arkansas

Fayetteville, AR 72701 USA

Email: ma135@uark.edu

Mariha Siddika Ahmad

Ph.D. Candidate in Computer Science, University of Arkansas
•Focus:

Database security with expertise in damage assessment, recovery algorithms
•Experience:

Research Assistant, Database Security, University of Arkansas
Grading Assistant, AI, University of Arkansas

•Publications:
Damage Assessment in Fog Computing Systems: Developed a novel blind write

lineage approach for secure IoT, presented at the SIoTEC Workshop 2024.
•Projects: Developed a malware classification tool using Pyramid Vision Transformer
achieving 94.8% accuracy.

Contents

Introduction:
• Fog computing Overview
• Problem Statement

Motivation
• Why Fog Systems Need Faster Recovery?

Key Concepts
Blind Write Lineage Model
Key Components of the Model
Cases of Blind Write Lineage Model
Damage Assessment Approach
Simulation Setup
Simulation Results
Conclusion

Fog Computing Overview

• Extension of cloud computing

• Brings computing resources
closer to end users

• Key characteristics:
➢ Low latency

➢ Geographic distribution

➢ Real-time interaction

➢ Heterogeneity

• Benefits:
➢ Reduced network
congestion

➢ Improved response
times

➢ Enhanced data security
and privacy

Cloud

FogFog Fog

Cloud Computing

Fog Computing

End Devices

Problem Statement

Vulnerability of Fog
Systems to Cyberattacks

•Fog computing extends
cloud resources closer
to users
•Inherits security risks
from traditional cloud
systems
•Interconnected nature
creates larger attack
surface
•Damage from attacks
can propagate swiftly
through the system

Key Challenges:

•Rapid damage
assessment crucial for
real-time operations

•Traditional recovery
methods inadequate for
fog environments

•Need for efficient
damage containment
and system restoration

Impact:

•Compromised data
integrity across
interconnected nodes

•Potential disruption of
critical services (e.g.,
healthcare, emergency
response)

•Financial and
reputational risks for
organizations

Motivation

Why Fog Systems Need Faster Recovery?

Critical Infrastructure
Demands

Emergency services,
healthcare, and smart

city systems require real-
time functionality

Downtime can have
severe consequences

(e.g., delayed emergency
response, compromised

patient care)

Traditional Recovery
Methods

Inadequate

System-wide shutdowns
are too disruptive

Manual data checks are
time-consuming and

error-prone

Unique Challenges
of Fog Computing

Interconnected nodes
allow rapid spread of

compromised data

Heterogeneous systems
increase complexity of

damage assessment

Massive data volumes
make traditional

recovery methods
impractical

Time is of the
Essence

Swift recovery prevents
cascading failures across
interconnected systems

Minimizes service
disruptions and potential

financial/reputational
damage

Crucial for maintaining
trust in critical

infrastructure relying on
fog computing

Key Concepts

Blind Writes

• Write operations that
update data without
reading existing values

• Characteristics:

➢No prior read request

➢Modification occurs
regardless of original
value

➢Absence of pre-write
read operation

Benefits

• Minimizes damage
assessment time

• Accelerates damage
recovery process

• Reduces system
downtime during attacks

Data Dependencies

• Relationships between
data items tracked for
damage assessment

• Types:

• Direct dependencies
(parent-child)

• Indirect dependencies
(ancestor-descendant)

•Enables tracing of damage propagation

•Facilitates efficient isolation of compromised data

•Crucial for targeted recovery efforts

Importance

Blind Write Lineage Model

Figure 1: Blind Write Lineage

Blind Write Lineage:

The lineage starts
with a blindly

written data item
(one that was

updated without
reading its

previous value).

Subsequent data
items in the

lineage depend
exclusively on

either the initial
blindly written

item or its
descendants.

This dependency
can be direct or

transitive
(through other

items in the
chain).

While some items
may use multiple

data items for
their update, at

least one of those
must be from the

blind write
lineage.

Blind Write Lineage Model

• It allows efficient tracing of potential
damage propagation from a compromised
blindly written item.

Tracing damage

• By identifying these lineages, the system
can prioritize which data items need closer
examination during damage assessment.

Focused
assessment

• It potentially reduces the scope of items
that need to be checked, compared to
examining all data dependencies.

Efficiency

The importance of this concept:

Key components of the model

• Records all blindly written data items

• Format: {[x, 𝑡𝑥, 𝑇𝑥] | x is blindly written, 𝑡𝑥 is update time and 𝑇𝑥 is the
transaction }

• Purpose: Identify potential damage sources within a subgraph

Blind Write (BW) list

• Tracks dependencies of data items solely dependent on blind writes

• Format: [Parent_node → Child_node]

• Purpose: Trace potential damage propagation

Blind Write Lineage (BW
Lineage) list

• Represent distinct clusters of related data items

• Each subgraph (Gi) contains its own:

• Blind Write Set (BWSi): Blindly written items in the subgraph

• Children Data Set (CDSi): Items dependent on BWSi elements

Subgraphs(Gi)

Key components of the model

• Contains blindly written items for a specific subgraph

• Format: {(x, 𝑡𝑥) | x is a parent node in Gi where x is blindly written by a
transaction and 𝑡𝑥 is the time x is updated}

• Purpose: Identify potential damage sources within a subgraph

Blind-Write Set(BWSi)

• Contains data items dependent on BWSi items

• Format: {(y, 𝑡𝑦)| y is not blindly written, there exists at least one x in
BWSi such that y is dependent on x (directly or transitively) and 𝑡𝑦 is the
time when y is updated}.

• Purpose: Track potential damage propagation within a subgraph

Children Data Set(CDSi)

• Initially damaged data items by attacker

• Format: {(di , 𝑡𝑑)| data item di is written by an attacking transaction and
therefore considered initially damaged, 𝑡𝑑 is the attack time}

• Purpose: Starting point for damage assessment

Damaged set

Key components of the model(Example)

Figure 2: Multiple subgraphs in the data dependency (G)

Gi G1 G2 G3

BWSi {(A,𝒕𝟏), (X,𝒕𝟑), (Y,𝒕𝟓)} {(P,𝒕𝟏𝟎), (S,𝒕𝟏𝟐)} {(J,𝒕𝟏𝟓)}

CDSi {(B,𝒕𝟐), (C,𝒕𝟒), (D,𝒕𝟔),
(E,𝒕𝟖), (F,𝒕𝟕), (G,𝒕𝟗)}

{(Q,𝒕𝟏𝟏),(C,𝒕𝟏𝟒),
(T,𝒕𝟏𝟓)}, (R,𝒕𝟏𝟖)}

{(C,𝒕𝟏𝟔),
(K,𝒕𝟏𝟕)}

D {(S,𝒕𝟏𝟐)}

Cases of Blind Write Lineage Model

Case 1: Single-Parent/Single-
Child Lineage

• Data items are updated
sequentially, each relying on a
single predecessor.

• The lineage traces back to the
original blindly written item.

Figure 3: Single-Parent/Single-Child Lineage

BW list [(A, 𝑡1, 𝑇𝑝), (𝑋, 𝑡9, 𝑇𝑥)]

BW lineage list [(A→B, B→C, C→D, D→E, E→F), (X→Y, Y→Z)]
Key Points

Simple and direct lineage.

Easy to trace damage
propagation.

Cases of Blind Write Lineage Model

Case 2: Multipath Lineage

• More complex scenario where
a child node might have
multiple parent nodes.

• Data items may be updated
using multiple arguments.

Figure 4: Complex Blind write Lineage.

BW list [(A, 𝑡1, 𝑇𝑎), 𝑋, 𝑡3, 𝑇𝑥 , (𝑌, 𝑡5, 𝑇𝑦)]]

BW lineage list [(A→B, (B,X)→C, C→D, (C,Y)→F, D→E, F→G,
Y→P)]

Key Points

Requires more refined damage
assessment.

Complex dependencies
necessitate careful tracing.

Damage Assessment

Objective:

• Quickly identify and isolate
compromised data in fog computing
systems

Challenges:

• Rapid propagation of damage

• Complex data dependencies

• Need for real-time recovery

Key Concepts in Damage Assessment:

•Attack Time (𝑡𝑎):
➢ Time when the malicious transaction occurred
➢ Crucial for determining the timeline of damage.
•Last Updated Time (𝑡𝑙𝑎𝑠𝑡 𝑢𝑝𝑑𝑎𝑡𝑒𝑑 𝑡𝑖𝑚𝑒):

➢ Last time each data item was updated
➢ Helps in assessing whether an item was affected

post-attack.
•Affected Time (𝑡𝑎𝑓𝑓):

➢ Time when a data item was affected by the attack
➢ Helps in assessing whether an item was affected

post-attack.

Damage Assessment

Initialize
Data

Structures

• Create Blind Write Set (BWSi) and Children Data Set (CDSi) for each
subgraph.

• Maintain a Final Updated Time table for all data items.

Identify
Damaged
Subgraphs

• Use the initial damaged set D to intersect with BWSi of each subgraph.

• Mark subgraphs as damaged if there’s an intersection.

Evaluate
Data Items

• For each damaged subgraph:

• Check dependencies in CDS.

• Compare last update times with attack time (𝑡𝑎) and affected time (𝑡𝑎𝑓𝑓).

Determine
Damage
Status

• Classify items as damaged if:

• Last update time equals affected time.

• Item depends on a damaged parent.

• Release items if they are not part of the damaged lineage or have been recovered.

Damage Assessment(Example)

Figure 5: Multiple subgraphs in the data dependency (G).

Data Items P Q S T C R

𝒕𝐋𝐚𝐬𝐭 𝐔𝐩𝐝𝐚𝐭𝐞𝐝 𝒕𝟏𝟎 𝒕𝟏𝟏 𝒕𝟏𝟐 𝒕𝟏𝟒 𝒕𝟏𝟗 𝒕𝟏𝟖

Graph G2 G2 G2 G2 G2 G2

TABLE 1: FINAL UPDATED TIMETABLE (FOR SCENARIO (A))

G2 G2 G3

Data

Items

P Q S T J C K R

𝒕𝐋𝐚𝐬𝐭 𝐔𝐩𝐝𝐚𝐭𝐞𝐝 𝑡10 𝑡11 𝑡12 𝑡14 𝑡15 𝒕𝟏𝟔 𝑡17 𝑡18

Graph G2 G2 G2 G2 G3 G3 G3 G2

TABLE 2: FINAL UPDATED TIMETABLE (FOR SCENARIO (B))

Scenario (a):
•Table 1 shows that data item C was last updated
at 𝒕𝟏𝟗 .
•This update occurred in the damaged graph G2

(shaded part).
•Since C is updated within the same damaged
graph, it remains compromised.

Scenario (b):
•Table 2 shows that data item C was last updated at 𝒕𝟏𝟔 .
•This update occurred in a separate graph G3.
•Although C is a child of the initially damaged data item S, its update
in a different graph signifies it is safe for release.

Simulation Setup

Variables Considered:

1.Number of Transactions: 200 to 900

2.Number of Data Items: 500 to 3000

3.Max Operations per Transaction: 3 to 12

4.Max Write Operations: 1 to 5

5.Number of Blind Writes: 1% to 10% of
transactions

Evaluate the efficiency and
effectiveness of the Blind Write Lineage
model in damage assessment.

Objectives:

Simulation Results

Varying the number of transactions

• As the number of transactions increases, the average
data item reads in traditional logs rise gradually.

• This increase is due to more transactions leading to a
higher number of blind writes and more subgraphs.

• The average data item reads remain relatively
constant and significantly lower compared to
traditional methods.

• This stability is attributed to consistent average
dependency per graph, even with more transactions.

Figure 6: Varying the number of transactions.

Simulation Results

Varying the number of data items.

• Significant decrease in average data reads after
identifying damaged data using our method
compared to traditional methods.

• The graph remains relatively consistent despite
variations in the number of data items.

• This consistency is due to the fixed number of blind-
written data items and written data items per
transaction. Previously written items are often read
later to write new items, leading to consistent
behavior.

Figure 7: Varying the number of data items.

Simulation Results

Varying the Max number of operations per
transaction.

• Both methods show an increase, but our method
maintains significantly lower average reads
compared to traditional transactions.

• More operations per transaction lead to more read
items. Increased dependency results in more data to
read.

• Despite the gradual increase in reads, our method
remains efficient, highlighting its effectiveness in
managing dependencies even with higher operation
counts. This explains the gradual increase observed
in the graph.

Figure 8: Varying the Max number of operations per transaction.

Simulation Results

Varying the Number of blind write per transaction

• Our method shows a gradual decrease in average
data reads. In contrast, normal transactions maintain
relatively constant reads.

• In our method, as the number of blind writes
increases, the number of subgraphs also increases.
Consequently, the number of data items depending
on each subgraph decreases, leading to a decrease in
the average reading. Figure 9: Varying the Number of blind write per transaction.

Simulation Results

Varying the Max write operations.

• In traditional method, average data reads
remain relatively constant.

• In our method, gradual increase in average data
reads can be seen because more write
operations lead to increased dependency.

• Fixed blind writes mean more data items are
written after being read, increasing
dependencies. Figure 10: Varying the Max write operations.

Conclusion

•Introduces an efficient technique for rapid damage assessment in fog computing systems
•Addresses limitations of traditional log analysis methods
•Leverages blind write lineage for efficient damage tracing
•Performance Advantages:

•Future Work:

•Superior speed in damage assessment
•Enhanced efficiency in data recovery
•Improved accuracy compared to traditional methods

•Refine model for specific time-range attacks.
•Optimize memory usage with efficient data structures.
•Ensure scalability across diverse architectures.
•Explore blockchain for secure transaction logging.

Thank You

	Slide 1: Validating Damage Assessment: A Simulation-Based Analysis of Blind Write Lineage in Fog Computing Mariha Siddika Ahmad and Brajendra Panda
	Slide 2
	Slide 3: Contents
	Slide 4: Fog Computing Overview
	Slide 5: Problem Statement
	Slide 6: Motivation
	Slide 7: Key Concepts
	Slide 8: Blind Write Lineage Model
	Slide 9: Blind Write Lineage Model
	Slide 10: Key components of the model
	Slide 11: Key components of the model
	Slide 12: Key components of the model(Example)
	Slide 13: Cases of Blind Write Lineage Model
	Slide 14: Cases of Blind Write Lineage Model
	Slide 15: Damage Assessment
	Slide 16: Damage Assessment
	Slide 17: Damage Assessment(Example)
	Slide 18: Simulation Setup
	Slide 19: Simulation Results
	Slide 20: Simulation Results
	Slide 21: Simulation Results
	Slide 22: Simulation Results
	Slide 23: Simulation Results
	Slide 24: Conclusion
	Slide 25

