

Riskpool – A Security Risk Management Methodology

Martin Ring, Robert Bosch GmbH, <u>martin.ring@bosch.com</u>;

Paul Duplys, Robert Bosch GmbH;

Sven Köhler, ITK Engineering GmbH

#whoami

2

NameMartin RingEducationApprenticeship Kfz-Mechatroniker, Bachelor of Engineering, Master of Science, Doctor of
Engineering (Dr.-Ing.)EmployersVW/Audi Garage, Dekra, Mercedes-Benz Special Trucks, Volkswagen Motorsport, IEEM,
Bosch Engineering (Security Manager, Product Secuirty Officer), Robert Bosch GmbH

Riskpool – A Security Risk Management Methodology Overview

- What is Risk & Risk Management
- Security Risk Management Database
- Riskpool Concept & Examples

3

Introduction Risk

4

 Risk – noun - The possibility of something bad happening at some time in the future; a situation that could be dangerous or have a bad result [Oxford Dictionary]

Introduction Risk Management

Managing First Oder Risk

[https://www.flickr.com/photos/val_s/8603033695]

5

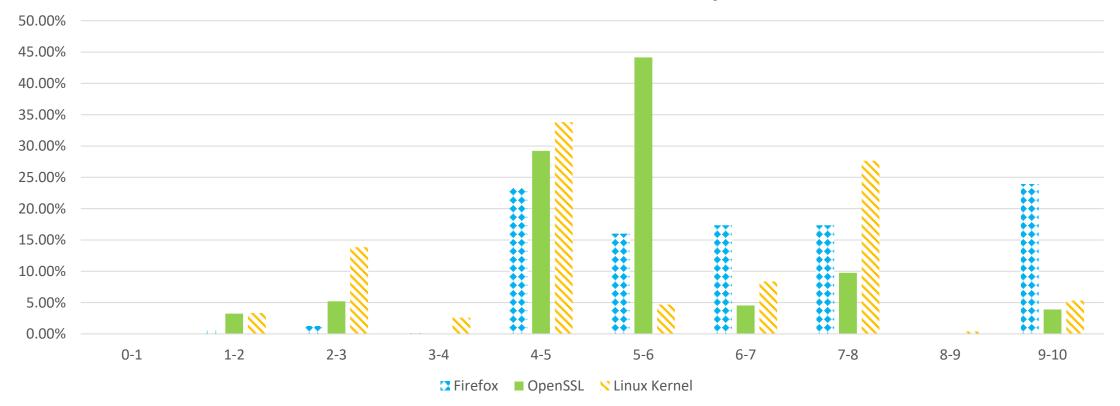
Managing Second Order Risk

[https://margomyers.com/crisis-communications-pr-guidelines/]

Security Risk Management Database – Software Size

Bosch ECU1 F-22 Raptor Bosch ECU2 Boeing 787 Linux Kernel 3.1 Large Hadron Collider Car Software Debian 5.0 10 100 1000 Mio. Lines of Code (LOC)

Mio. Lines of Code (LOC)


6 Internal | CR/ASD 3 | 2024-10-17

© Robert Bosch GmbH 2024. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

Security Risk Management Database - Vulnerabilities

CVE Distribution for Three OSS Projects

7 Internal | CR/ASD 3 | 2024-10-17

© Robert Bosch GmbH 2024. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

Security Risk Management Database

8

Software	Vulnerabilities per 1,000 LoC	LoC (2023)	Σ CVEs 2012- 2022
Google Chrome	0.08	25,600,000	2,154
Firefox	0.06	25,300,000	1,459
Linux Kernel	0.07	33,600,000	2,230
OpenSSL	0.11	1,540,000	163
Python	0.06	1,320,000	77
PHP	0.23	1,510,000	349

min. 2,000 exploitable vulnerabilities waiting to be discovered in a top of the line car over the next five years.

Riskpool Concept

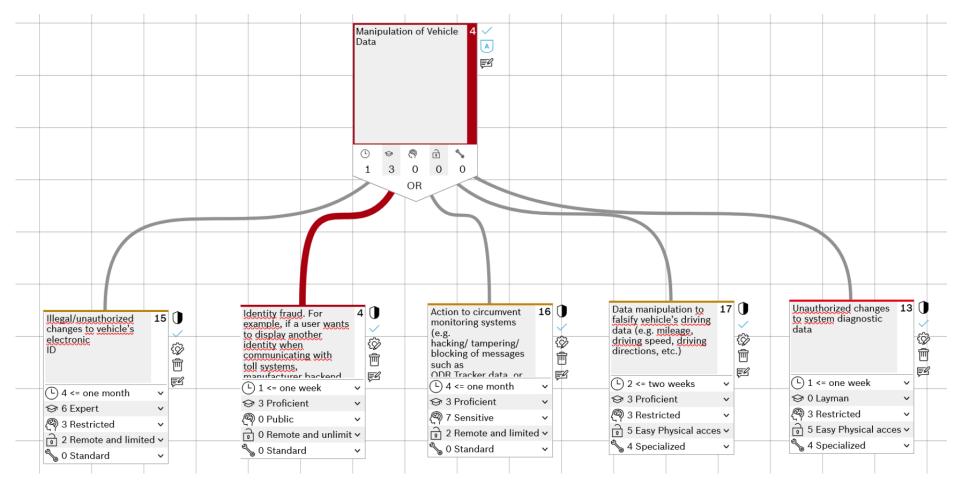
9

 Risks associated with all products that are not at the end of their lifetime on one side and a risk pool, representing the available capacity to fix defects in a product over its lifetime on the other side:

$$\sum_{i} Project_{i} \cdot TARA \ Residual \ Risks_{i} \cdot Weight_{i} \leq \sum Developers \cdot Fixing \ Capability \cdot Capacity$$

- *i*: products in expected lifetime (lifetime, legal definition open e.g., Porsche mean age of fleet = 25 years, Automotive OEM1 requests 6 years after SOP)
- TARA Residual Risks: Residual risk values depend on the used TARA methodology
- Weight: Residual risks will have an associated weight, 2-10% of the expected risks (TARA) manifest (scaling with code age, innovation level, delivery with known vulnerabilities, LoC & FotA capability)
- Fixing Capability: capability of developers to fix vulnerabilities, value depends on TARA methodology
- *Capacity*: how much capacity of the available developers is assigned for maintenance and fixing vulnerabilities

Riskpool Example UNECE


		Attack Feasibility Rating			
		Very Low	Low	Medium	High
Impact	Severe	2	3	4	5
Rating	Major	1	2	3	4
	Moderate	1	2	2	3
	Negligible	1	1	1	1

Values	Attack Feasibility
>25	Very Low
20-24	Low
14-19	Medium
0-13	High

Impact Rating	Criteria (based on ISO 26262)
Sever	S3: Life Threatening
Major	S2: Severe Injuries
Moderate	S1: Light Injuries
Negligible	S0: No Injuries

Riskpool Example UNECE

11 Internal | CR/ASD 3 | 2024-10-17

© Robert Bosch GmbH 2024. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

BOSCH

Riskpool Example UNECE

		Attack Feasibility Rating			
		Very Low	Low	Medium	High
Impact	Severe	2	3	4	5
Rating	Major	1	2	3	4
	Moderate	1	2	2	3
	Negligible	1	1	1	1

Values	Attack Feasibility
>25	Very Low
20-24	Low
14-19	Medium
0-13	High

Impact Rating	Criteria (based on ISO 26262)
Sever	S3: Life Threatening
Major	S2: Severe Injuries
Moderate	S1: Light Injuries
Negligible	SO: No Injuries

Riskpool Example

- Company ExCom, 2 products: ECU_A & ECU_B, TARA according to ISO21434
- ECU_A:
 - Automotive Safety Integrity Level (ASIL) D ECU
 - low innovation level
 - deviations proven in field
 - low range wireless communication capabilities.
 - Residual Risk: 29 points, Weight: 0.02, 250 projects with this product each year, one year support
- ECU_B:
 - ASIL B ECU
 - new product
 - No wireless interfaces
 - Residual Risk: 116 points, Weight: 0.05, 250 projects with this product each year, one year support

Riskpool Example

Company ExCom employs 1,000 developers, has 2 products ECU1 (RR: 29, Weight 0.02, 250 projects p.a.) & ECU2 (RR: 116, Weight 0.05, 250 projects p.a.)

$$\sum_{i} Project_{i} \cdot TARA Residual Risks_{i} \cdot Weight_{i} \leq \sum Developers \cdot Fixing Capability \cdot Capacity$$

- $\sum_{250} 29 \cdot 0.02 + \sum_{250} 116 \cdot 0.05 \stackrel{?}{\leq} \sum 1,000 \cdot 30 \cdot 0.05$
- 1,595 > 1,500
- The company in this example is exceeding its risk pool
 - Possible solutions might be increasing aloted developer capacity (increase to 6% would result in an available pool of 1,800 points)

Riskpool Conclusion

- The proposed method enables centralized management and monitoring of the company's risk appetite.
- The inequation can be affected by:
 - The projects, by mitigating the residual risks
 - Management, by increasing the number of developers or the assigned percentage to vulnerability management
- Risk pool shall be recalculated with every project going into production
- The weight might be adjusted by the individual company and the approach fine tuned over multiple years, so
 a realistic view on individual vulnerabilities and fixing capabilities becomes available.

