

The Development and Impact of Browser Fingerprinting on Digital Privacy

Nice, November 2024

ALEXANDER LAWALL

PROF. DR. ALEXANDER LAWALL

Academic Roles

- Program Director, B.Sc. & M.Sc. Cyber Security and Cyber Security Management
- Professor in Cyber Security (Distance & On-site Learning)

Expertise

- System & Network Security
- Web Application & Cloud Security
- IoT and Industrial IT Security

Professional Affiliations

- Leadership Committee, "Management of Information Security" (Society for Informatics, GI)
- Professional Lead, "Security & GRC in IT" (Summit Leipzig)
- Member, Association of Cyber Forensics and Threat Investigators (ACFTI)
- Member, Zentrum Digitalisierung Bayern (ZD.B)

Research & Publications

- Focus Areas: Cyber Security, Information Security, Industry 4.0/5.0, IoT, Rights Management
- Publications in national/international Journals and Conferences
- Keynote Speaker, Program Chair, Panel Expert of International Conferences

AGENDA

Motivation and Research Questions				
Browser Fingerprinting	2			
Methods of Browser Fingerprinting				
Conclusion	4			

MOTIVATION AND RESEARCH QUESTIONS

Motivation

Traditional Method - Cookies

- User consent for traditional cookies as per GDPR (→ sense of control for users)
- Properties: Easy to clear; increasingly restricted; browsers actively blocking or limiting (privacy concerns)

Privacy Concerns with Cookies

- Local data storage with cookies (> users manage or delete this data)
- Transparency of cookies (> cookie consent mechanisms for online privacy)
- Techniques like browser fingerprinting bypass these controls?! How?

MOTIVATION AND RESEARCH QUESTIONS

Research Questions

- **RQ1:** What **methods** are used in **browser fingerprinting** and what **user data** are collected in the process?

- **RQ2:** How has the development of browser fingerprinting as a user identification method influenced user privacy and data protection in the digital space?

Criteria: Uniqueness, Stability, and Entropy

BROWSER FINGERPRINTING

Definition and Usage

- Collects characteristic information from the browser (stealthily in the background)
- Used for tracking users and IT security applications

Comparison with Cookies

- Does not require storing data on the user's computer
- Operates secretly and without user consent

Challenges in Digital Privacy

- Creating a new identity is difficult
- GDPR privacy laws offer little protection

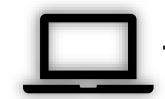
Legal Loopholes

- Not explicitly mentioned in GDPR
- Website operators claim "legitimate interest" for data collection

Source: Created with Microsoft Copilot

BROWSER FINGERPRINTING

Passive Data Collection


- Transmits information like user's preferred language via HTTP headers
- Provides limited information

Active Data Collection

- Uses JavaScript to gather detailed browser information
- Collects data such as screen resolution, installed add-ons, and graphics card data
- Merges collected data into a unique fingerprint

HTTP Header Attributes

GET /index.html HTTP/1.1 Host: www.example.com

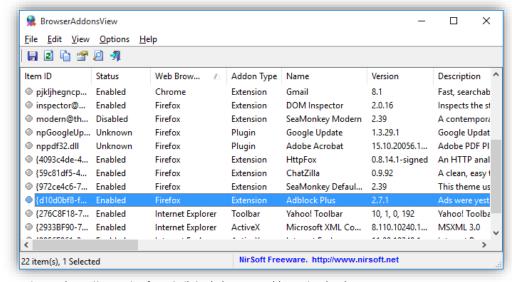
User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64)
AppleWebKit/537.36 (KHTML, like Gecko) Chrome/79.0.3945.79

Safari/537.36

Definition and Basics

- Part of every HTTP request between client and server
- Transmits functional and compatibility-related information
- Based on HTTP version 1.1, with modifications in HTTP/2
- Key fields i.e., User-Agent, Accept, and Content-Language

- Attributes differ by browser and version
- Effective fingerprinting requires consistent attributes
- Reliable fields: User-Agent, Accept, Content-Encoding, Content-Language
- User-Agent offers high uniqueness


Enumeration of Browser Plugins

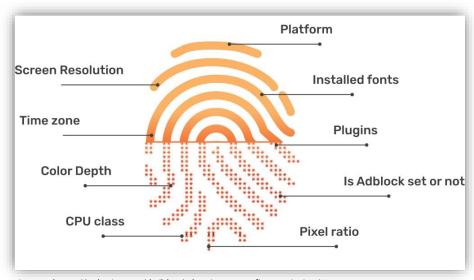
Definition and Basics

- Browser plugins can be preinstalled or user-added
- Indirectly modify most browser features except extensions
- High demand for accurate enumeration of extensions
- Detects system plugins (e.g., PDF viewer) to identify user environments

Analysis

- Information-rich plugins like Flash have disappeared
- Most browsers no longer support NPAPI plugin interface
- Navigator.plugins object shows only standard plugins
- New methods to enumerate extensions have emerged
- Chromium-based browsers can access extension settings via local URL

Source: https://www.nirsoft.net/utils/web_browser_addons_view.html


Canvas Fingerprinting

Definition and Basics

- Uses Canvas element from HTML5
- Generates a unique fingerprint based on hardware and software variations
- Uses the HTML5 Canvas API to render an image and capture unique graphic handling

Analysis

- Script draws a hidden 2D graphic
- Uses fonts and sizes to test uniqueness
- Image data hashed and sent to server
- Enables system profiling
- Variances in hardware/software produce distinct rendering outputs

Source: https://gologin.com/de/blog/what-is-canvas-fingerprinting/

Web Graphics Library (WebGL) Fingerprinting

Definition and Basics

- Uses WebGL JavaScript API based on OpenGL ES 2.0
- Renders 2D and 3D graphics with high performance
- Captures unique hardware information, especially about the graphics processor

- Uses a Canvas element to access the API
- Collects data without user interaction
- Browsers like WebKit and Firefox mask specific hardware details to protect privacy
- Accesses variables for graphics details, providing a stable fingerprint

Source: Created with Microsoft Copilot

Audio Fingerprinting

Definition and Basics

- Web Audio API processes and synthesizes audio signals in browsers
- Identifies systems through hardware differences
- Analyzes signal processing characteristics for fingerprinting

- Involves acoustic measurements for unique device fingerprint
- Uses AudioContext, AudioBuffer, Oscillator, and Compressor
- Dynamic Compressor (DC) method is highly stable
- Fast Fourier Transform (FFT) converts signals from time to frequency domain
- DC and FFT often used together for reliability

https://www.reddit.com/r/programming/comments/mb0ob8/how_the_web _audio_api_is_used_for_browser/

Font Fingerprinting

Definition and Basics

- Identifies devices by recognizing installed fonts
- Creates unique digital fingerprints for tracking and identification

Analysis

- Post-Adobe Flash, JavaScript uses fallback mechanisms for font recognition
- Invisible div elements and canvas elements identify installed fonts
- Local Font Access API requires user consent, not suitable for fingerprinting

Source: Created with Microsoft Copilot

INTERNATIONAL UNIVERSITY OF APPLIED SCIENCES

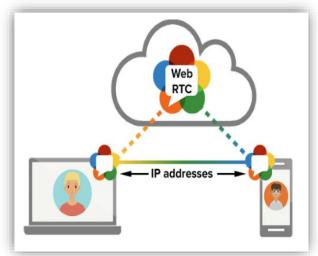
Screen Fingerprinting

Definition and Basics

- Identifies a device by analyzing screen-related characteristics
- Includes screen resolution, pixel depth, color depth, and browser window size
- Leverages uniqueness of screen configurations and browser modifications

- JavaScript provides attributes for screen and browser window characteristics
- Details include color depth, screen orientation, and screen dimensions
- Values like window.innerWidth and window.innerHeight determine browser window's inner area

Source: Created with Microsoft Copilot


Web Real-Time Communication (WebRTC) Fingerprinting

Definition and Basics

- WebRTC is a JavaScript interface in most browsers
- Facilitates real-time communication over HTTP
- Reveals private and public IP addresses
- Provides information about connected devices.

- No permissions required for establishing WebRTC connections
- IP addresses can be read from RTCPeerConnection object
- Can enumerate local network to build unique profiles
- DetectRTC project demonstrates WebRTC's capabilities

Source: https://www.tonmind.com/blog/webrtc-web-real-time-communication_b21

CSS Fingerprinting

Definition and Basics

- Passive method using CSS, unlike active JavaScript techniques
- CSS enhances HTML presentation with selectors and filters

- Pre-2010: :visited selector detected visited sites via link color
- Post-2010: Time-based methods required JavaScript, impractical
- 2015: Takei et al. (2015) introduced JavaScript-free method using CSS properties and @media queries

Source: Created with Microsoft Copilot

Additional JavaScript Attributes

Definition and Basics

- JavaScript used to extract information from interfaces
- Techniques share characteristics with other JavaScript-based methods

Analysis

- Navigator object provides various information
- JavaScript implementation varies between browsers
- Differences in function availability and execution
- getClientRects function used for precise DOM element data


```
// Funktion zum Abrufen von Browser-Attributen
function getBrowserAttributes() {
   const attributes = {
       screenResolution: `${window.screen.width}x${window.screen.height}`
       colorDepth: window.screen.colorDepth,
       userAgent: navigator.userAgent,
       language: navigator.language,
       platform: navigator.platform,
       cookiesEnabled: navigator.cookieEnabled,
       javaEnabled: navigator.javaEnabled(),
       onlineStatus: navigator.onLine,
       timezone: Intl.DateTimeFormat().resolvedOptions().timeZone,
       hardwareConcurrency: navigator.hardwareConcurrency,
       deviceMemory: navigator.deviceMemory,
       maxTouchPoints: navigator.maxTouchPoints,
       vendor: navigator.vendor,
       product: navigator.product,
        appName: navigator.appName,
        appVersion: navigator.appVersion,
       appCodeName: navigator.appCodeName
       productSub: navigator.productSub,
       vendorSub: navigator.vendorSub
   };
   return attributes;
// Beispielverwendung
const browserAttributes = getBrowserAttributes();
console.log(browserAttributes);
```

Source: Created with Microsoft Copilot

Advanced Techniques Using Machine Learning

Definition and Basics

- JavaScript gathers hardware and software information
- Side-channels capture behavioral differences
- Methods include plugin enumeration, font fingerprinting, and CSS fingerprinting

- Wang et al. (2021) used cache, memory, and CPU activity to identify websites
- CSS selectors previously revealed browsing history
- Machine learning models categorize results with 80-90% accuracy
- Potential future implementations with WebAssembly and Performance API

Source: Created with Microsoft Copilot

Aggregated Results of the Analysis

Fingerprinting Method	Uniqueness	Stability	Entropy	Impact on User Privacy	Defense Techniques
HTTP Header Attributes	Low	Moderate	Low	Moderate impact: limited detail but useful when combined with other methods.	Altering or masking headers (e.g., randomizing User-Agent).
Enumeration of Browser Plugins	Moderate	High	High	High impact: reveals sensitive data, such as installed plugins.	Disabling plugin enumeration, avoiding unnecessary add-ons.
Canvas Fingerprinting	High	Moderate	High	High impact: generates unique fingerprints based on rendering.	CanvasBlocker extension to block or manipulate rendering.
WebGL Fingerprinting	High	High	High	High impact: collects detailed hardware data for tracking.	Block or manipulate WebGL outputs.
Audio Fingerprinting	Moderate	High	Moderate	High impact: captures unique audio processing details.	Disable Web Audio API, use privacy extensions.
Font Fingerprinting	High	High	Moderate	High impact: identifies installed fonts, making it persistent.	Limit font access with privacy- focused browsers (e.g., Tor).
Screen Fingerprinting	Moderate	High	Low	Moderate impact: uses screen res- olution and window size but less effective on mobile devices.	Fix window size or limit resolution reporting with privacy browsers.
WebRTC Fingerprinting	Very High	High	Very High	Very high impact: exposes real IP addresses, even behind VPNs.	Disable WebRTC, use extensions that block data collection.
CSS Fingerprinting	Low	Moderate	Low	Low impact: provides limited system and style information.	Limit or disable CSS fingerprinting through extensions or scripts.
JavaScript Attributes	Moderate	High	Moderate	Moderate impact: uses various browser features for tracking.	Disable unnecessary JavaScript functions or use privacy extensions.
Advanced Machine Learning Fingerprinting	Very High	Very High	Very High	Very high impact: uses side- channel data (e.g., CPU/cache) for tracking.	Limit access to Performance API and WebAssembly, emerging defenses needed.

CONCLUSION

Summary

Browser Fingerprinting

- Growing technique in online tracking
- Identifies and tracks users without cookies
- Uses device, software, and behavioral attributes

Privacy and Security

- Raises significant privacy concerns
- Limited user control and consent.
- Valuable for advertisers and security

Regulatory and Anti-Fingerprinting Efforts

- GDPR and other privacy laws lack specific fingerprinting guidelines
- Enforcement is inconsistent.

Implications for Practice

Consent and Cookies

- Accept only necessary cookies in banners
- Regularly delete cookies to prevent tracking
- Important for news sites to avoid misuse of data

Blending in with the Masses

- Reducing APIs and data sources can make users more identifiable
- Use widely adopted browsers and protection mechanisms

Browser Choice

- iOS: Safari for advanced tracking protection
- Android: Mull browser for fingerprinting protection,
 Brave as an alternative
- Desktops: Brave, Librewolf, and Mullvad for privacy features

What are your opinions on Browser Fingerprinting: Concerns for Digital Privacy or a tool for enhancing security?

What do you think about Automatic Content Recognition used in Smart TVs and Smartphones?

Prof. Dr. Alexander Lawall <u>alexander.lawall@iu.org</u>