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Presentation Outline

SECURWARE 2024 - KAN vs KAN: Examining Kolmogorov-Arnold Networks (KAN) Performance Under Adversarial Attacks

• Introduction and Problem Statement 

• Kolmogorov-Arnold Networks (KANs) introduction 

• Noise and Adversarial Attacks 

• Methodology and Architecture

• Results

• Conclusions and Future Work



Key Contributions

• Comparative study evaluating the robustness of Kolmogorov-Arnold 

Networks (KANs) against adversarial attacks (FGSM, PGD) and 

Gaussian noise

• Demonstrates KANs' vulnerabilities under noisy and adversarial 

conditions, with significant accuracy drops compared to MLPs.

• Provides insights into KANs' sensitivity to perturbations, revealing 

areas for improvement in robustness and security.
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Introduction
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• KANs: Flexible, interpretable neural networks.

• Research gap: Robustness under adversarial attacks 

and noise not fully explored.

• Goal: Compare KANs vs. MLPs under adversarial 

attacks (FGSM, PGD) and Gaussian noise. 



Problem Statement
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• MLPs: Limited flexibility, vulnerable to noise/attacks.

• KANs: Learnable spline functions offer flexibility but may 

introduce sensitivity to perturbations.

• Focus: Testing robustness of KANs.
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Kolmogorov-Arnold Network Architecture

Z. Liu et al., Kan: Kolmogorov-arnold networks, 2024.
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Based on Kolmogorov-Arnold Representation Theorem: Any multivariate continuous function f(x1,....,xn) within a bounded 

domain can be represented as a superposition of continuous single-variable functions

Traditional MLPs:

• Fixed activation functions like ReLU

• Linear weight matrices

KANs:

• Use spline-based activations on edges

• Greater non-linearity and adaptivity

fixed activation functions 

on nodes

learnable weights on 

edges

learnable activation 

functions on edges

sum operation on nodes
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Adversarial Attacks
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Random Noise:

• Gaussian noise tests real-world resilience.

Fast Gradient Sign Method (FGSM):

• Introduces small, calculated perturbations to input data

• Simple yet powerful attack

Projected Gradient Descent (PGD):

• Iterative attack based on FGSM

• More effective and resilient

Impact on Neural Networks: Even minor perturbations can cause significant 

prediction shifts.
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Methodology
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Goal: Compare the robustness of KANs to 

MLPs under:

• Clean conditions

• Noisy data (Gaussian noise)

• Adversarial attacks (FGSM and PGD)

Dataset: MNIST (handwritten digits)

Evaluation Metrics: Accuracy, Precision, 

Recall, F1-Score 
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KAN vs. MLP Architectures
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Input Layer: Takes the raw input data 

(28x28 pixel image, or 784 features.).

Hidden Layers: Each hidden layer 

applies fixed activation functions (e.g., 

ReLU), and every neuron is fully 

connected to neurons in adjacent layers.

(512, 256, 128, 64)

Output Layer: Produces the final 

classification or prediction (10 - one 

neuron per class for MNIST digits). 

Input Layer: Similar to MLP, takes raw 

input data.

KANLinear Layers: Replaces standard 

hidden layers with layers using learnable 

spline-based activation functions, 

allowing flexibility in how activations 

adapt during training.

Output Layer: Similar to MLP, outputs 

predictions (e.g., digits 0–9 for 

classification). 

MLP KAN
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KAN vs. MLP Architectures
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MLP: Fixed weights and ReLU activations.     KAN: Spline-based activations on edges. 
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Results – Clean Data
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• In clean conditions, KANs performed slightly better than 

MLPs.

• Accuracy: KAN - 97.95%, MLP - 97.40%

• KAN’s flexible architecture leads to better handling of 

data variability.
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Results – Clean Data
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Results – Clean Data
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MLP KAN
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Results – Gaussian Noise
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• KAN’s accuracy degraded faster as noise increased 

compared to MLPs.

• Noise level 90: KAN - 88.21%, MLP - 94.77%

• KANs struggle more under noisy conditions, especially 

for digits like 1 and 8.
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Results – Gaussian Noise
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Results – Gaussian Noise
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MLP KAN
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Results – Adversarial Attacks
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FGSM Attack (ε = 0.3):

• KAN’s accuracy drops to 63.87% compared to 

MLP’s 92.48%.

• KAN is more sensitive to small perturbations.

PGD Attack (ε = 0.3):

• KAN drops further to 53.12%, while MLP remains 

relatively robust at 96.29%.
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Results – FGSM
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Results – FGSM
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MLP KAN
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Results – PGD
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Results – PGD
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MLP KAN
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Results Summary
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Conclusions
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• KAN excels in clean environments.

• KAN suffers more from noise and adversarial attacks than MLP.

• Possible causes: Spline function sensitivity and overfitting.

• Next steps: Enhancing resilience for secure ML applications.
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Future Work

• Investigating and developing advanced robustness 

techniques tailored for KANs.

• Designing KAN architectures that inherently handle noisy 

inputs better. 

• Conducting a thorough security analysis of KANs across a 

broader range of AA methods.
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