

Keynote

Applications of Radar Sensors in Remote Health Monitoring

Prof. Sung Ho Cho

Department of Electronic Engineering Hanyang University Seoul, South Korea

> (Office)+82-2-2220-0390 dragon@hanyang.ac.kr

Outlines

- Vital Sign Monitoring …… 3
- Heart Rate Variability (HRV) Monitoring ····· 12
- Sleep Monitoring ····· 22
- ✤ Gait Analysis ····· 30
- Human Posture Classification ····· 50
- ✤ Radar for Pets ····· 66
- ✤ Radar in Neonates ····· 83
- Anthropometric Measurement in Neonates ····· 89
- Autonomous Screening of Neurodevelopmental High-Risk Infants ····· 97
- ✤ Waist-to-Hip Ratio (WHR) Monitoring in Obese Youth ····· 108

Vital Sign Monitoring

- "Machine Learning for Healthcare Radars: Recent Progresses in Human Vital Sign Measurement and Activity Recognition," IEEE COMST, First Quarter 2024.
- "Effects of Receiver Beamforming for Vital Sign Measurements Using FMCW Radar at Various Distances and Angles," Sensors, Sep. 2022.
- "Preclinical Evaluation of Noncontact Vital Signs Monitoring Using Real-Time IR-UWB Radar and Factors Affecting Its Accuracy," Scientific Reports, Dec. 2021.
- "Experimental Comparison of IR-UWB Radar and FMCW Radar for Vital Signs," Sensors, Nov. 2020.
- "An Overview of Signal Processing Techniques for Remote Health Monitoring using Impulse Radio UWB Transceiver," Sensors, Apr. 2020.
- "Preclinical Evaluation of a Noncontact Simultaneous Monitoring Method for Respiration and Carotid Pulsation Using Impulse-Radio Ultra-Wideband Radar," Scientific Reports, Aug. 2019.
- "A Novel Non-Contact Heart Rate Monitor Using Impulse-Radio Ultra-Wideband (IR-UWB) Radar Technology," Scientific Reports, Aug. 2018.
- "A Detailed Algorithm for Vital Sign Monitoring of a Stationary/Non-Stationary Human through IR-UWB Radar," Sensors, Feb. 2017.

SENSORDEVICES 2024, Nov. 03-07, Nice, France

Non-Contact Vital Sign Monitoring (1/3)

- ✤ Respiration Rate (RR)
- ✤ Heart Rate (HR)
- Movement Monitoring

Reduce Staff Turnover Rates

Acute Care Space, Nursing Home, Assisted Living Facility, Long-Term Care Facility

Non-Contact Vital Sign Monitoring (2/3)

Frequency (Hz)

Detection of RR and HR

- *
 - Health & Wellness Category
 - Digital Health Category
 - In-Vehicle Entertainment & Safety Category
 - Correctional, Human Security for All Category

Innovation Awards (Honoree) at CES 2021~2024, USA Imes FDA Clearance for Vital Sign Monitoring Sensor, USA (April 2021)

Selected as one of "The Best Inventions of 2022" by TIME MAGAZINE, USA (November 2022)

 "Radar-based Vital Sign Monitoring on KETV News" for Installation at Midlands Living Center in Council Bluffs, Iowa, USA (February 2023)

Recognized as One of the "5 New Innovations to Help Seniors Live Better," FOX News, USA (January 2024)

Arrhythmia Detection

✤ Normal - Female / 27

Arrhythmia Patient - Female / 79

Heart Rate Variability (HRV) Monitoring

• "Feasibility of Early Assessment for Psychological Distress: HRV-Based Evaluation Using IR-UWB Radar," Sensors, Sep. 2024.

• "Noncontact Assessment for Fatigue Based on Heart Rate Variability Using IR-UWB Radar," Scientific Reports, Aug. 2022.

Test Example #1: Fatigue Assessment (1/4)

- HRV is related to interaction between sympathetic and parasympathetic influences in the heart.
- ✤ 1-Hour, 3-Step Experiment Protocol
 - HRV measurement for 10 min before exercise
 - Treadmill running at 8 Km/hour speed for 20 min
 - HRV measurement for 30 min after exercise
- Sampling Rate of Radar & ECG: 250 samples/sec

- ✤ Using HRV, we want to
 - Estimate a *recovery time* of each participant using HRV after exercise.
 - Find the relationship between the "body fat percentage" and "patterns of recovery" from exercise-induced fatigue

Test Example #1: Fatigue Assessment (2/4)

✤ HRV Frequencies

- Quantify modulation of the sympathetic and parasympathetic branches of the autonomic nervous system.
- Very Low Frequency (VLF): 0~0.04 Hz
- Low Frequency (LF): 0.04~0.15 Hz
- High Frequency (HF): 0.15~0.4 Hz

✤ LF/HF Ratio

- Shows autonomic nervous system (ANS) balance.
- Low LF/HF ratio:
 - Parasympathetic nervous system (PSNS) dominance
 - Allows repair and healing while we are relaxing, assists with digestion.
- High LF/HF ratio:
 - Sympathetic nervous system (SNS) dominance
 - Triggers when we feel highly stressed, emotional, tired, over-worked.

15

Test Example #1: Fatigue Assessment (3/4)

ANOVA Analysis

Standardized Mean Difference

Clinical characteristics Values (N=15) Age (years) 27.2 ± 3.7 13/2 Gender (male/female) Weight (kg) 70.9 ± 10.8 172.7 ± 6.5 Height (cm) BMI (kg/m²) 23.54 ± 2.6 Total body fat mass (kg) 18.3 ± 3.9 Percent body fat (%) 24.6 ± 5.1 **HRV** variable ECG Radar SMD T0: Rest (before exercise) LF (second²/Hz) 10.1 ± 3.5 12.9 ± 4.2 0.771 HF (second²/Hz) 0.739 11.5 ± 4.0 8.62 ± 4.0 LF/HF 1.20 ± 0.3 1.25 ± 0.4 -0.189 T1: Fatigue 1 (0~10 min after exercise) LF (second²/Hz) 8.67 + 7.10 8.61 ± 6.5 -0.089 HF (second²/Hz) 2.68 ± 2.2 0.030 2.60 ± 2.35 LF/HF 3.43 ± 0.7 3.67 ± 0.95 -0.293 T2: Fatigue 2 (10~20 min after exercise) LF (second²/Hz) -0.312 4.56 ± 1.2 5.1 ± 2.4 HF (second²/Hz) 2.40 ± 0.5 -0.020 2.4 ± 0.8 LF/HF 1.95 ± 0.4 2.1 ± 0.5 -0.355 T3: Recovery (20~30 min after exercise) LF (second²/Hz) 11.7 ± 4.8 9.7 ± 5.5 0.383 HF (second²/Hz) 0.217 7.70 ± 4.1 6.8 ± 4.58 LF/HF 1.70 ± 0.5 1.6 ± 0.40 0.184

Subject Characteristics

Data were shown as the mean \pm SD. SMD: Standardized Mean Difference

SENSORDEVICES 2024, Nov. 03-07, Nice, France

16

Test Example #1: Fatigue Assessment (4/4)

T1 T2 T3 - S2 -S3 Ratio HRV LF/HF S11 S12 S13 - S14 Before S15 exercise After Running exercise 20 25 30 35 40 45 50 55 60 0 10 15 Elapsed Time (min)

Changes of LF/HF Ratios

Body Fat Percentage vs. Time to Recovery

SENSORDEVICES 2024, Nov. 03-07, Nice, France

Nov. 07, 2024

Test Example #2: Mental Distress Assessment (1/4)

✤ Experimental Setup

- 15 employees in a software startup company in Seoul, South Korea.
- Age: 23~43 years old (average = 30.9 years)
- 15 employees x 8 independent times = 120 measurements

- Visual Analog Scale (VAS)
 - A *questionnaire* in which participants rate their levels of conditions such as *pain*, *mood* and *worry* by selecting a point on a line between two opposite extremes.
 - Participants were requested to rate their level of mental distress prior to the HRV measurement, with *a response resolution set at 0.5 sec*.

Validation of Radar Accuracy

SDNN: Standard Deviation of Normal to Normal (NN) Interval (*Stress Resistance*)
 RMSSD: Root Mean Square of Successive Differences between Adjacent NN Intervals (*Vitality of Parasympathetic Nervous System*)

LF/HF Ratio: Low-Frequency to High-Frequency Ratio (Balance of Autonomic Nervous System)

102 evaluations, excluding 18 outliers

Test Example #2: Mental Distress Assessment (4/4)

Mental Distress Assessment

102 evaluations, excluding 18 outliers

	VAS Score Range	N	ECG		IR-UWB radar		
Group			Mean RR [ms]	SDNN [ms]	Mean RR [ms]	SDNN [ms]	
Control 1	0 ≤ VAS < 2.5	21	840.76	34.99	840.61	37.71	
Control 2	2.5 ≤ VAS < 5.0	20	832.15	36.31	831.81	37.86	
Control 3	5.0 ≤ VAS < 7.5	49	821.93	33.10	822.08	36.50	"Significantly
Control (all)	0 ≤ VAS < 7.5	90	828.59	34.25	828.56	37.08	lower"
High mental distress	7.5 ≤ VAS < 10.0	12	726.75	22.29	726.12	31.72	<mark>د-></mark>

Sleep Monitoring

- "Non-contact Sleep/Wake Monitoring Using Impulse-Radio Ultrawideband Radar in Neonates," Frontiers in Pediatrics, Dec. 2021.
- "Non-Contact Diagnosis of Obstructive Sleep Apnea Using Impulse-Radio Ultra-Wideband Radar," Scientific Reports, Mar. 2020.
- "Validation of Noncontact Cardiorespiratory Monitoring Using Impulse-Radio Ultra-Wideband Radar against Nocturnal Polysomnography," Sleep and Breathing, Aug. 2019.

Sleep Monitoring with Radar

Vital Sign Monitoring

- Respiration Rate (RR)
- Heart Rate (HR)

Sleep Apnea

- Central Apnea
- Obstructive Apnea
- Hypopnea
- Apnea Hypopnea Index (AHI)

Daily

Easy to use

23

No privacy issue

Sleep Apnea (1/6)

- ✤ Apnea/Hypopnea
 - *Apnea*: No breathing for over 10 sec
 - Central Apnea (Brain doesn't tell to breathe during sleep)
 - Obstructive Apnea (Airway collapse)
 - Mixed Apnea
 - Hypopnea: Shallowed breathing

- Common Causes
 - Obesity
 - Large neck size
 - Abnormal upper airway anatomy
 - Using medications, drugs, or alcohol
 - Aging
 - Sleeping on the back
 - REM or dreaming sleep
 - Smoking

Sleep Apnea (2/6)

- Common Symptoms of Sleep Apnea
 - Loud or frequent snoring
 - Choking or gasping sounds
 - Witnessed pauses in breathing during sleep
 - Dry mouth or throat
 - Morning headache
 - Memory loss
 - Attention deficit
 - Depression
 - Excessive daytime sleepiness
 - Fatigue
 - Nocturia
 - Impotence
 - Insomnia

Sleep Apnea (3/6)

- Apnea Hypopnea Index (AHI)
 - Average number of apnea & hypopnea per hour

 $AHI = \frac{\# \text{ of Apneas} + \# \text{ of Hypopneas}}{\text{Total Sleep Time (Hour)}}$

Normal: AHI<5
Mild: 5≤AHI<15
Moderate: 15≤AHI<30
Severe: AHI≥30

학교

Sleep Apnea (4/6)

SENSORDEVICES 2024, Nov. 03-07, Nice, France

27

Intraclass Correlation Coefficient R (ICCR)

Apnea Hypopnea Index (AHI) vs. Abnormal Breathing Index (ABI)

Confusion Matrix

Obstructive Sleep Apnea (OSA)

	Normal (AHI < 5)	Mild (5 ≤ AHI < 15)	Moderate (15 ≤ AHI < 30)	Severe (AHI ≥ 30)	Recall
Normal (AHI < 5)	25	5	0	0	0.83
Mild (5 ≤ AHI < 15)	3	26	4	0	0.78
Moderate (15 ≤ AHI < 30)	0	4	20	1	0.80
Severe (AHI ≥ 30)	0	0	2	36	0.95
Precision	0.89	0.74	0.77	0.97	Overall Agreement 0.85

Gait Analysis

• "Gait Asymmetry Evaluation Using FMCW Radar in Daily Life Environments," LNCS (IWBBIO 2023), Nov. 2023.

• "Noncontact Extraction of Biomechanical Parameters in Gait Analysis Using a Multi-Input and Multi-Output Radar Sensor," IEEE Access, Oct. 2021.

Gait Analysis

- Why Gait? *
 - Early Screening of Neurodegenerative Diseases such as Parkinson's and Alzheimer's Diseases
 - Senior Mobility Analysis
 - Fall Prevention

Gait Parameters *

- Center of Force (CoF)
- Force
- Weight Distribution
- Stride Time
- Stance Time
- Flight Time
- Step Time
- Cadence (steps/minute)
- Maximum Foot Velocity Interval

Nov. 07, 2024

FRIMI	J-9DOEV5
IMU Chip Set	EBIMU-9DOFV5
Acceleration FPS	100 Hz
Angular velocity vector FPS	100 Hz
Absolute orientation FPS	100 Hz
Acceleration range	<u>+</u> 8 G
Angular velocity range	2000 degree/s
Inertial Measu	urement Unit (IMU)
3-axis Gyros	scope Jeration Sensor
3-axis Geon	nagnetic Sensor

Range-Doppler Map

Range-Azimuth Map

SENSORDEVICES 2024, Nov. 03-07, Nice, France

Intraclass Correlations and Bland-Altman Plots (1/2)

SENSORDEVICES 2024, Nov. 03-07, Nice, France
Intraclass Correlations and Bland-Altman Plots (2/2)

✤ Agreement between FMCW Radar and IMU Sensors

Gait Parameters	ICC	Mean Bias	Upper LOA	Lower LOA	p-value			
Stride Time	0.972 (0.971-0.973)	0.00	0.14	-0.14	0.001			
Average* Stride Time	0.999 (0.999-0.999)	0.00	0.00	0.00	0.001			
Stance time	0.925 (0.921-0.928)	0.01	0.18	-0.16	0.001			
Average* Stance Time	0.975 (0.964-0.982)	0.01	0.10	-0.07	0.001			
Flight Time	0.648 (0.633-0.663)	-0.01	0.16	-0.18	0.001			
Average* Flight Time	0.851 (0.794-0.894)	-0.01	0.07	-0.1	0.001			
Step Time	0.823 (0.812-0.835)	0.00	0.19	-0.19	0.001			
Average* Step Time	0.955 (0.927-0.973)	0.00	0.08	-0.08	0.001			
Maximum Foot Velocity Interval	0.981 (0.980-0.982)	0.00	0.11	-0.11	0.001			
Average* Maximum Foot Velocity Interval	0.999 (0.999-0.999)	0.00	0.00	0.00	0.001			
Cadence	0.999 (0.999-0.999)	-0.08	0.56	-0.71	0.001			
ICC: Intraclass Correlation Coefficient; CI: Confidence Interval; LOA: Limit of Agreement Average*: average of each gait parameter for each subject								

Experiment #2: Daily Home Use

Experiment #2: Gait Parameters of Interest

♦ 6 Gait Parameters:

- Step time
- Step distance
- Instantaneous step velocity
- Pause time between steps
- Step distance variations
- Step time variations

Consider two walking patterns:

- Normal walk
- Artificial abnormal walk

Normal Walk

Artificial Abnormal Walk

Experiment #2: Tracking the Body Point & Foot Velocity

Nov. 07, 2024

Experiment #2: Gait Parameter Extraction (1/2)

Step Time

Values of even-number steps
Values of odd-number steps

Step Distance

Instantaneous Step Velocity

Separation of Even- and Odd-Number Steps

Velocity of even-number step
Velocity of odd-number step

Experiment #2: Gait Parameter Extraction (2/2)

Experiment #2: Walking Pattern Example

Normal Walk

Abnormal Walk

Experiment #2: Radar Performance

✤ Gait Instability:

- *N* = *Number* of steps
- P_k = Gait parameter values of the k^{th} step

✤ Gait Asymmetry:

- N = Number of steps
- $D_k = |P_{k+1} P_k|$ (Difference between the k^{th} and $(k+1)^{th}$ gait parameters)

N = 60 (6 Steps x 10 Independent Trials) for Each Participant

HANYANG UNIVERSITY

Experiment #2: Gait Asymmetry

Step Time

Step Distance

Instantaneous Velocity

Human Posture Classification

• "Distance and Angle Insensitive Radar-Based Multi-Human Posture Recognition using Deep Learning," Sensors, Oct. 2024. (Under review)

• "Advancements in Radar Point Cloud Processing for Macro Human Movements in Healthcare and Assisted Living Domains: A Review," IEEE Sensors Journal, Oct. 2024.

Data Collection

Early Screening:

- Dementia
- Movement disorders
- Depression
- Stress / Anxiety
- Chronic asthma
- Chronic pain

Emergency in Elderly:

- Lonely death
- Fall detection / prevention

Sleep Monitoring:

- Sleep efficiency
- Chronic insomnia

Design Strategy

MIMO FMCW Radar

Data Collection

✤ AWR2243 Cascade Radar

- Operating Frequency: 76GHz 81GHz
- Bandwidth: 5GHz
- No. of TX Antennas: 12
- No. of RX Antennas: 16
- Virtual Azimuth Antennas: 86
- Virtual Elevation Antennas: 4
- Field of View: ±60°

Virtual Antenna Array 86 X 4 (134 antenna elements are used.)

Range and Doppler FFTs

Nov. 07, 2024

Angle FFT

Angle of Arrival (AoA) of Multiple Targets

Point Cloud

n: *number* of detected target points

Nov. 07, 2024

DBSCAN Clustering

- Density-Based Spatial Clustering of Applications with Noise (DBSCAN)
- DBSCAN groups points together based on density
- Key Parameters
 - Maximum radial distance between two points (ϵ)
 - Minimum number of points (MinPts)
- ✤ Key Features:
 - Ability to remove outliers
 - Ability to detect multiple targets within one frame
 - Ability to detect noise
 - No need to specify number of clusters
 - No overlap among clusters
 - Ability to handle clusters of arbitrary shapes

Before Clustering

After Clustering

Separated and Centered Targets

(E) N 0.8

0.6

0.4

0 1

Experimental Setup

2-Human Scenario

AWR2243 Cascade Radar

4 Postures

Radar Parameter	Value
Starting frequency	77 GHz
Bandwidth	3.3 GHz
Number of frames per second	20
Number of chirps per frame	32
ADC samples per chirp	256
Number of Tx antennas	12
Number of Rx antennas	16
Field of View (FOV)	$\pm 60^{\circ}$

10 Non-Overlapping Combinations *

Results of Point Cloud *

Results of DenseNet

C#1	C#2	C#3	C#4	C#5
ŧ i	Ň,		•72 •41	İ.

C#6	C#7	C#8	C#9	C#10
	j j		Ъź	. 172-

		C#1	C#2	C#3	C#4	C#5	C#6	C#7	C#8	C#9	C #10
	C#1	100%	11.1%					11.1%			
	C#2		88.8%								
	C#3			100%							
	C#4				100%			5.5%		5.5%	
Tr	C#5					100%					
	C#6						100%				
ie La	C#7							83.3%			
abel	C#8								100%		5.5%
	C#9									94.4%	
	C #10										94.4%
	Overall Prediction Accuracy 96.0%										

18 trials per each combination (180 trials in total)

SENSORDEVICES 2024, Nov. 03-07, Nice, France

Predicted Label

Experiment #2: Overlapping & Non-Overlapping Posture Combinations (1/3)

한양대학교 HANYANG UNIVERSITY

Experiment #2: Overlapping & Non-Overlapping Posture Combinations (2/3)

✤ Results

Scenario	Both Standing (C#01)	Standing & Sitting (C#02)	Standing & Sitting Standing & Lying (C#02) (C#03)		Sitting & Lying (C#05)	Overall
Non-Overlap	100%	100%	100%	94.4%	100%	98.8%
≈ 33% Overlap	100%	94.4%	100%	94%	94%	96%
≈ 66% Overlap	94%	94%	100%	83%	83%	91%

Comparison with Other CNNs

Radar for Pets

• "A Public Dataset of Dogs Vital Signs Recoded with Ultra Wideband Radar and Reference Sensors," Scientific Data, Jan. 2024.

• "UWB Radar-Based Pet Monitoring on Daily Basis in an Unconstrained Living Environment." Int. Radar Symp. (IRS 2023), May 2023.

Motivations and Objectives

- Want to construct a non-contact method to monitor the basic health condition of dogs raised at home on a daily basis using radar.
 - Vital sign measurements
 - Movement quantification
 - Early detection of potential illness
- Validation of radar-based vital sign measurements of dogs in controlled environments.
 - Resting respiratory and heart rates
 - Validation by gold standard references
- Radar-based daily vital sign measurements of dogs in semi-constraint and unconstrained environments.
 - Respiratory and heart rates of dogs
 - Movement quantification
 - Validation by video record references

Respiratory Rate (RR) of Dogs

- Normal RR of a Dog at Rest
 - 10~35 breaths per minute.
- Panting Mode
 - Up to 200 pants per minute (Due to heat, excitement, stress, pain, medicine, heatstroke)

Vet's Access to Dog's RR

 The easiest way to gather your dog's respiratory rate is to count the number of breaths per 30 seconds and then multiply by two.

Heart Rate (HR) of Dogs

Normal HR for a Dog at Rest

- Small Breed: 90~150 beats per minute
- Medium Breed: 70~120 beats per minute
- Large Breed: 60~90 beats per minute

Vet's Access to Dog's HR

- The best spot to find the dog's heart rate is the left side of the chest, right behind the dog's elbow.
- Use stethoscope to count the beats, or put the flat palm of your hand on the dog's chest wall.
- If the dog prefers to lie down, have the dog lie on the right side.
- The easiest way to gather your dog's heart rate is to count the number of beats per 15 seconds and then multiply by four.

Nov 07 2024

Novelda X4M02 Module

- Single-chip ultra-wideband (UWB) impulse radar transceiver
- Frequency: 7.25~10.2 GHz
- Bandwidth: 1.5 GHz
- FOV(Field of View) : about 65° (azimuth/elevation)
- Detection Speed : 50 frames per second (FPS)
- Power consumption: typically < 120 mW
- Operating temperature range: -40 / +85 °C
- Master/Slave Serial Peripheral Interface (SPI)

- * The experiment was performed in the operation room at **N Animal Medical Center**, Seoul, South Korea.
- ✤ Radar is positioned approximately 30cm above the operating bed.
- ◆ Data collection was made for 3 minutes under sleep anesthesia immediately after surgery.
- ✤ 10 dogs participated in the experiment.

Veterinary Multi-Parameter

Experiment #1: Demography

Number	Breed	Gender	Age	Weight (Kg)	Neutering	Surgery
1	Dachshund	М	7	11.3	0	Disc
2	Shiva Dog	F	4	12	Х	Chylothorax
3	Poodles	F	8	8.7	Х	MGT(Mammary Gland Tumor)
4	Poodles	F	5	2.9	Х	Left Cruciate Ligament Rupture
5	Poodles	F	8	8.3	0	Cholecystectomy
6	Schnauzer	F	4	5.5	0	Neutering
7	Maltese	F	7	3.8	0	Cruciate Ligament Rupture
8	Pomeranian	F	12	3.2	Х	Canine Pyometra
9	Poodles	F	8	6	0	Tooth Extraction, Neutering
10	Pompitz	F	4	5.1	Х	Right Cruciate Ligament Rupture

#7

#9

#10

Extraction of RR and HR

HANYANG UNIVERSITY

Comparisons between Radar and Gold Standard *

SENSORDEVICES 2024, Nov. 03-07, Nice, France

74

- The experiment was performed at the intensive care unit (ICU) chamber.
- ✤ Radar is positioned on the glass outside the chamber.
- Data collection was made for 24 hours.
- ✤ 20 dogs participated in the experiment.

Num	Age	Breed	Gender	Weight (Kg)	Environments	Neutering	Surgery	Chamber No.
1	9	Shih Tzu	F	7.4	ICU	0	Hospitalization for surgery	Big No.1 ICU
2	4	Maltese	М	10.7	ICU	0	Hospitalization for surgery	Small No.2 ICU
3	10	Mixed Breed	F	8.2	ICU	0	Hospitalization for surgery	Small No.1 ICU
4	10	Pomeranian	F	8.1	ICU	0	Hospitalization for surgery	Big No.1 ICU
5	12	Mixed Breed	F	11.3	ICU	0	Hospitalization for surgery	Small No.2 ICU
6	8	Maltese	М	7.6	ICU	0	Hospitalization for surgery	Big No.1 ICU
7	5	Mixed Breed	М	5	ICU	0	Hospitalization for surgery	Big No.1 ICU
8	7	Mixed Breed	F	7.7	ICU	0	Hospitalization for surgery	Big No.1 ICU
9	6	Hound	F	12.2	ICU	Х	Hospitalization for surgery	Small No.2 ICU
10	10	Maltese	F	9.9	ICU	Х	Hospitalization for surgery	Small No.2 ICU
11	9	Maltese	F	7.2	ICU	0	Hospitalization for surgery	Big No.1 ICU
12	10	Mixed Breed	F	13.7	ICU	Х	Hospitalization for surgery	Small No.2 ICU
13	4	Shiva dog	F	12	ICU	Х	Hospitalization for surgery	Small No.2 ICU
14	5	Maltese	М	6.1	ICU	0	Hospitalization for surgery	Small No.2 ICU
15	5	Welsh Corgi	F	8.5	ICU	0	Hospitalization for surgery	Big No.1 ICU
16	11	Poodle	М	11.5	ICU	Х	Hospitalization for surgery	Small No.2 ICU
17	10	Maltese	М	7.6	ICU	0	Hospitalization for surgery	Small No.2 ICU
18	6	Dachshund	М	13.5	ICU	Х	Hospitalization for surgery	Big No.1 ICU
19	8	Pomeranian	М	7.4	ICU	0	Hospitalization for surgery	Small No.2 ICU
20	7	Maltese	F	6.6	ICU	0	Hospitalization for surgery	Small No.2 ICU

Experiment #2: 30 Minute Dashboard

Experiment #3: Unconstrained Living Environment

- Want to realize radar-based daily vital sign measurements of dogs in an unconstrained living environment (i.e., Home).
 - RR and HR of dogs
 - Movement quantification
 - Validation by video record references (No gold standard)
- Want to provide a 24/7 dashboard that shows
 - Changes in vital signs
 - Quantified body movements
- Recruiting dogs was the most difficult part.

Number	Breed	Gender	Age	Weight (Kg)	Neutering	Health Issues
1	Mix-Breed	М	11	8.1	0	Nothing Special
2	Mix-Breed	М	12	10.5	0	Aging

#1

Experiment #3: Design Strategy

Experiment #3: 24 Hour Dashboard (1/2)

SENSORDEVICES 2024, Nov. 03-07, Nice, France

Experiment #3: 24 Hour Dashboard (2/2)

Radar in Neonates

- "Radar Recorded Child Vital Sign Public Dataset and Deep Learning-Based Age Group Classification Framework for Vehicular Application," Sensors, Mar. 2021.
- "Feasibility of Non-Contact Cardiorespiratory Monitoring Using Impulse-Radio Ultra-Wideband Radar in the Neonatal Intensive Care Unit," PLOS ONE, Dec. 2020.
- "Non-Contact Respiration Monitoring Using Impulse Radio Ultrawideband Radar in Neonates," Royal Society Open Science, Jun. 2019.

Vital Sign Monitoring (1/5)

- Need a safe way of monitoring premature / newborn babies.
 - Non-Contact Vital Sign Monitoring
 - Non-Contact Movement Monitoring

Neonatal Intensive Care Unit (NICU)

Respiration and Heartbeat Waves

Respiration Rate (RR) and Heart Rate (HR) Trend

Statistics (BW1, BW2, and BW3 Separately)

Anthropometric Measurement in Neonates

• "Machine Learning Assisted Noncontact Neonatal Anthropometry Using FMCW Radar," Scientific Reports, Sep. 2024. (Under review)

• "Preclinical Trial of Noncontact Anthropometric Measurement Using IR-UWB Radar," Scientific Reports, May 2022.

- Periodic measurement of height and weight of newborns
 - A criterion for evaluating growth status
 - The most basic indicator for determining whether nutrition is adequately supplied and whether there is any edema.
- However, there is always a risk of having to move the child to measure height and weight.
 - This often requires a lot of caution and effort to ensure a certain level of safety and accuracy.
- A non-contact method of measuring the height and weight of a newborn baby is necessary.
 - Radar based machine learning technique

Experimental Setup

Cradle

TEXAS INSTRUMENTS

$\langle \langle \rangle \rangle$	Radar Parameter	Value/Description		
	Starting frequency	60 GHz		
	Bandwidth	3.98 GHz		
	Frame rate	20 frames per second		
Radar	Number of chirps	16 chirps per frame		
	ADC samples rate	520 samples per chirp		
8 Virtual Antennas	Number of Tx antenna used	2 Tx Antenna		
	Number of Rx antenna used	4 Rx Antenna		

한양다

HANYANG UNIVERSITY

(한영)

학교

Selection of Heatmap Images

- Images that show excessive movements of the neonates were eliminated for machine learning
- The K-means clustering technique is applied.

Convolution Neural Network (CNN)

Results

Subjects	He	eight Measu	irements (c	m)	Weight Measurements (gram)				Locations
	Radar	Real	Error (cm)	Error (%)	Radar	Real	Error (gram)	Error (%)	Acquisition
P1	46.2	46	-0.2	0 %	2393	2210	-183.5	-8 %	NICU
P2	47.1	47	-0.1	0 %	3166	3200	33.8	1 %	NICU
P3	47.5	47.5	0.0	0 %	3287	3410	122.7	4 %	NICU
P4	47.3	49	1.7	3 %	3267	3560	292.9	8 %	NICU
P5	45.6	45.5	-0.1	0 %	2342	2180	-162.3	-7 %	NICU
P6	44.7	43	-1.7	-4 %	3172	3160	-11.6	0 %	NB
P7	48.1	49	0.9	2 %	2820	2640	-179.5	-7 %	NICU
P8	49.3	51	1.7	3 %	3491	3540	49.0	1 %	NICU
P9	45.0	45	0.0	0 %	2739	2640	-99.5	-4 %	NB
P10	50.0	50	0.0	0 %	3312	3450	137.5	4 %	NB
P11	57.7	58.9	1.2	2 %	6480	7200	719.7	10 %	Outpatient Clinic
P12	64.5	65.5	1.0	1 %	7434	7500	66.1	1 %	Outpatient Clinic
P13	62.4	65.9	3.5	5 %	6391	7000	609.0	9 %	Outpatient Clinic

Nov. 07, 2024

IANYANG UNIVERSITY

Statistics

- Intra-class correlation coefficient (ICC)
- Mean absolute error (MAE)
- Root mean square error (RMSE)

Autonomous Screening of Neurodevelopmental High-Risk Infants

- "Autonomous Screening of Infants at High Risk for Neurodevelopmental Impairments using a Radar-based Machine Learning Method," Scientific Reports. Sep. 2024. (Under review)
- "Early Screening Tool for Developmental Delay in Infancy: Quantified Assessment of Movement Asymmetry Using IR-UWB Radar," Frontiers in Pediatrics, Oct. 2022.
- "Quantified Assessment of Hyperactivity in ADHD Youth Using IR-UWB Radar," Scientific Reports, May 2021.
- "Quantified Activity Measurement for Medical Use in Movement Disorders through IR-UWB Radar Sensor," Sensors, Feb. 2019.
- "Human-Computer Interaction Using Radio Sensor for People with Severe Disability," Sensors and Actuators A: Physical, Oct. 2018.

General Movements (GMs)

- An approach for early identification of infants at high risk of *neuro-developmental impairments (NDIs)*
- C. Einspieler and H.F.R. Prechtl, "Prechtl's assessment of general movements: A diagnostic tool for the functional assessment of the young nervous system," Mental Retardation and Developmental Disabilities, Research Review, 11(1):61-67 (2005), doi: 10.1002/mrdd.20051.
 - GMs involve the whole body in a variable sequence of arm, leg, neck, and trunk movements.
 - GMs wax and wane in intensity, force and speed, and have a gradual beginning and end.
 - If the nervous system is impaired, GMs loose their complex and variable character and become monotonous and poor.
- Two specific abnormal GM patterns reliably predict later cerebral palsy:
 - A persistent pattern of Cramped Synchronized GMs (CSGMs).
 - The movements appear rigid and lack the normal smooth and fluent character.
 - Limb and trunk muscles contract and relax almost simultaneously.
 - The absence of GMs with *Fidgety Character*.
 - So-called fidgety movements are small movements of moderate speed with variable acceleration of neck, trunk, and limbs in all directions.

Design Strategy

<section-header></section-header>	Solution of the second	ar Array ogle-Time)	Asymmetric Movement Detection 2D Histogram Movement Frequency Asymmetric?	"Neuroriskability" Potential Risk of NDIs
Radar Parameters	Description		CSGMs Detection	
Starting frequency	60 GHz		ShuffleNet	
Bandwidth	4 GHz		Machine	
Frame rate	20 frames per second		Learning → CSGMs?	
Number of chirps	16 chirps per frame			
ADC sample per chirp	520 samples			
Number of Tx antennas	2	8 Virtual Antennas		
Number of Rx antennas	4			
Field of view (FOV)	±60°			

NICU Hanyang University Hospital

Experimental Setup

Baseline Characteristics of Infants Enrolled in This Study

Participants	Gestational age (weeks)	Birth weight (grams)	Corrected age at experiment (weeks)	Weight at experiment (grams)	Diagnosis
Control 1 (C1)	38 ⁺¹	3,320	38+4	3,160	Normal Full-Term
Control 2 (C2)	38 ⁺⁰	2,700	38 ⁺²	2,640	Normal Full-Term
Control 3 (C3)	38 ⁺⁴	3,450	38 ⁺⁵	3,450	Normal Full-Term
Patient 1 (P1)	24 ⁺²	710	37 ⁺⁶	2,210	Suspicious HIE (both)
Patient 2 (P2)	25 ⁺⁰	820	41 ⁺⁴	3,410	Both IVH (GIII, both), PVL (left-G2, right-G4)

NICU: Neonatal Intensive Care Unit HIE: Hypoxic Ischemic Encephalopathy (저산소 허혈성 뇌병증) IVH: Intraventricular Hemorrhage (뇌실내 출혈) PVL: Periventricular Leukomalacia (뇌실주변 백질연화증) G: Grade

FMCW Radar

For each frame, we perform *

Tolerance rage of difference in the R and L movements for being symmetric: $\pm 10\%$

SENSORDEVICES 2024, Nov. 03-07, Nice, France

102

한양대학교 HANYANG UNIVERSITY

Cramped Synchronized GMs (CSGMs) Detection

SENSORDEVICES 2024, Nov. 03-07, Nice, France

103

ShuffleNet Structure

Neuroriskability

- Possibility of Having Neuro-Developmental Impairments (NDIs)
- Calculation of Neuroriskability

Num	ber of	Num	Neuroriskability	
Detected Asymr	netric Movement	Detected Abno	(%)	
Symmetric Asymmetric A B		Normal C	CSGMs D	(B+D)/(A+B+C+D)

Neuroriskability was computed using randomly selected **45** 3D arrays from each baby.

Particinant	Numl Asymmetric Mov	ber of vement Detection	Numl Abnormal Move	Neuroriskability	
i articipant	Symmetric, A	Asymmetric, B	Normal, <mark>C</mark>	CSGMs, D	<mark>(B+D)/(A+B+C+D)</mark> (%)
C1	37 (82%)	8 (18%)	39 (91%)	6 (9%)	16%
C2	34 (76%)	11 (24%)	40 (89%)	5 (11%)	18%
C3	32 (71%)	13 (29%)	41 (91%)	4 (9%)	19%
Sub-Total	103 (76%)	32 (24%)	12 (90%)	13 (10%)	17%
P1	9 (20%)	36 (80%)	1 (4%)	44 (96%)	88%
P2	6 (13%)	39 (87%)	7 (16%)	38 (84%)	86%
Sub-Total	15 (17%)	75 (83%)	8 (9%)	82 (91%)	87%

Follow-Up Results of Patient Group (P1 and P2)

It was confirmed that the improvements in neuroriskability were comparable with the neurological examination results performed by medical specialists at the clinic.

Neuroriskability (%)

Waist-to-Hip Ratio (WHR) Monitoring in Obese Youth

• "Evaluating waist-to-hip ratio in youth using frequency-modulated continuous wave radar and machine learning," Scientific Reports. Sep. 2024. (Under review)

Why Waist-to-Hip Ratio (WHR) Monitoring?

- Obesity is a significant global public health issue.
 - It is linked to serious metabolic diseases, such as abdominal obesity, high blood sugar, high blood pressure, high HDL cholesterol, and high triglycerides.
 - Body Mass Index (BMI):
 - Most commonly used to diagnose obesity.
 - It, however, does not provide information on the proportion and distribution of fat.
 - Waist-to-Hip ratio (WHR):
 - Effective indicator of *central obesity*
 - Central obesity is a more significant risk factor for cardiovascular diseases and mortality than BMI-defined obesity.
- Measuring WHR with tape (conventional method) can be inconvenient, and potentially and socially unacceptable in children of pubertal age or in certain cultures.
- Measuring WHR with radar offers convenience and simplicity for easy measurement.

Design Strategy

HANYANG UNIVERSITY

SENSORDEVICES 2024, Nov. 03-07, Nice, France

250 radar images for each participant at every 5 sec

Hanyang University Hospital

✤ 100 Participants

Variable	Low WHR (WHR ≤ 0.86)	Moderate WHR (0.86 < WHR < 0.91)	High WHR (WHR ≥ 0.91)	Total
Age (Years)	(Years) 11.49 ± 1.88		10.87 ± 1.87	11.10 ± 1.90
Gender (N)				
Male	17 (53.1 %)	14 (43.8 %)	14 (38.9 %)	45 (45 %)
Female	15 (46.9 %)	18 (56.2 %)	22 (61.1 %)	55 (55 %)
Sub-total	32	32	36	100
Height (cm)	150.28 ± 13.20	146.86 ± 11.28	150.04 ± 13.74	149.10 ± 12.79
Height z-score	0.46 ± 0.97	0.50 ± 0.92	0.97 ± 1.08	0.54 (-0.05 - 1.19)
Weight (kg)	43.05 (36.85 - 57.02)	49.82 ± 13.34	60.29 ± 19.62	50.35 (39.00 - 63.23)
Weight z-score	0.69 ± 1.20	1.25 ± 1.06	2.17 ± 1.09	1.40 ± 1.27
Waist Circumference (cm)	70.70 ± 10.14	76.57 ± 9.27	88.74 ± 12.11	79.07 ± 13.02
Hip Circumference (cm)	86.23 ± 11.63	86.68 ± 10.06	92.78 ± 11.59	88.74 ± 11.44
WHR	0.82 (0.80 - 0.84)	0.88 ± 0.01	0.95 (0.93 - 0.98)	0.89 ± 0.06
BMI (kg/m ²)	21.09 ± 4.56	22.68 ± 3.40	25.98 ± 4.35	23.36 ± 4.60
BMI z-score	0.60 ± 1.42	1.36 ± 1.08	2.32 ± 0.98	1.67 (0.42 - 2.50)

Demographics of Participants

 \times Data are presented as mean ± standard deviation for normally distributed variables and median (Q1-Q3) for non-normally distributed variables.

Scatter Plot for Participants

SENSORDEVICES 2024, Nov. 03-07, Nice, France

Point Cloud

n: number of detected target points

SENSORDEVICES 2024, Nov. 03-07, Nice, France

- ✤ Generated 250 radar images at every 5 sec for each participant.
- Accumulated every 25 radar images to generate 10 enhanced images for each participant.
 - 8 images for *Training*, and 2 images for *Testing*.

Participant #1

ResNet-18 for WHR Measurements

Nov. 07, 2024

Intra-Class Correlation (ICC)

Confusion Matrix

		Measurements by Clinician			Overall				
		Low WHR	Moderate WHR	High WHR	Accuracy: 0.82				
Measurements by Radar	Low WHR	54	8		Precision: 0.82		Baseline for Risk Groups		
	Moderate WHR 10						WHR Group	WHR Baseline	
		51	14	<i>Recall</i> : 0.82		Low WHR	WHR ≤ 0.86		
	High WHR		58	F1-Score: 0.82		Moderate WHR	0.86 < WHR < 0.91		
						High WHR	WHR ≥ 0.91		

SENSORDEVICES 2024, Nov. 03-07, Nice, France

Nov. 07, 2024

