

On the noise floor of constant temperature thermal **conductivity detectors**

SENSORDEVICES 2024

Antoine Riaud, Yannick Maret, Kai Hencken

© Copyright ABB. All rights reserved. Document ID.: Rev.:

Antoine Riaud

—

Sensing & analytics team, ABB corporate research center

Antoine Riaud received his PhD in acoustics, microelectronics, and telecommunications from Lille University (France) in 2017. He then completed a postdoc at Paris Descartes University. From 2018 to 2022, he worked as an associate professor at Fudan University (Shanghai, China). Since 2022, he has joined the sensing and analytics team at the ABB Corporate Research Center in Switzerland.

His research interests include microsystems and microfluidics, sensing technologies and data analytics. He has authored or co-authored over 37 peer-reviewed journal publications in these fields and holds 6 issued or pending EU/international patents

Gas chromatography

—

Thermal conductivity detector

- Independent of pressure
- Highly contrasted between light gases (H, He) and other gases

For a mixture of gases 1 and 2, with x_2, x_2 the molar fractions of each gas:

$$
k_{mix} = \sum_{i} \frac{k_i(T)}{1 + \sum_{j \neq i} \phi_{ij} \frac{x_j}{x_i}}
$$

 ϕ_{ij} Interaction term, very weakly dependent on temperature

Thermal conductivity of gases (W/mK)

Thermal conductivity depends only on temperature & molar fraction

Thermal conductivity detector

Applications

—

Gas chromatography (measure the concentration of separated components)

Leak detection (of Helium & Hydrogen)

Thermal conductivity detector

Principle

—

Thermal conductivity is a material property that measures the transfer of heat by conduction

Temperature difference

NTC: 2-in-1 device that measures temperature (resistance variation) and creates heat (Joule heating)

Constant temperature TCD

—

Regulation of the bead temperature

The sensor measures the amount of heat needed to maintain the bead at the temperature setpoint

Noise analysis

Trace gas

Noise analysis

Trace gas

Then that leaves only the 1/f noise…

Excess 1/f noise:

—

Quantification using Hooge's law

Noise model

—

High fidelity electro-thermal model

Results

Noise model

—

Asymptotic analytical model

Assume bead temperature perfectly regulated

=> The bead temperature changes to cope with the noisy resistance

> $dR =$ ∂R $\frac{\partial R}{\partial T}(T^* - T) + n = 0$

With the power spectral density of *n* given by Hooge's noise expression:

$$
S(n) = \frac{S_{RR}}{R^2} = \frac{\alpha_H}{N\Omega f}
$$

This changes the voltage on the bead:

$$
\frac{V^{*^2}}{R} = \frac{T^* - T_w}{Z}
$$
 Wall temperature

Thermal impedance of the bead

Low-frequency asymptote:

$$
\sigma \frac{S_{VV}}{V_b^2} \approx \frac{2\pi\alpha_H}{N\Omega\omega} \left| \frac{T^2}{2\beta(T - T_w)} \right|^2
$$

High-frequency asymptote:

$$
\frac{S_{VV}}{V_b^2} \approx \frac{2\pi\alpha_H}{N} \left| \frac{T^2}{2\beta(T - T_w)} \frac{3r_b^2\epsilon}{2\pi\kappa_g r_N} \right|^2
$$

Minimization of the noise

—

Sketch of a perfect bead Low Hooge coefficient Small bead (less glass) $T = 2T_w$ High bead effusivity T^2 $2\pi\alpha_H$ $3r_b{}^2$ ϵ \approx $\cal N$ $2\pi\kappa_q r_N$ $2\beta(T)$ $T_w)$ High charge carrier density Larger NTC High ambient fluid High temperature thermal coefficient conductivity

Independent of the circuit, mainly depends on the NTC geometry & material

