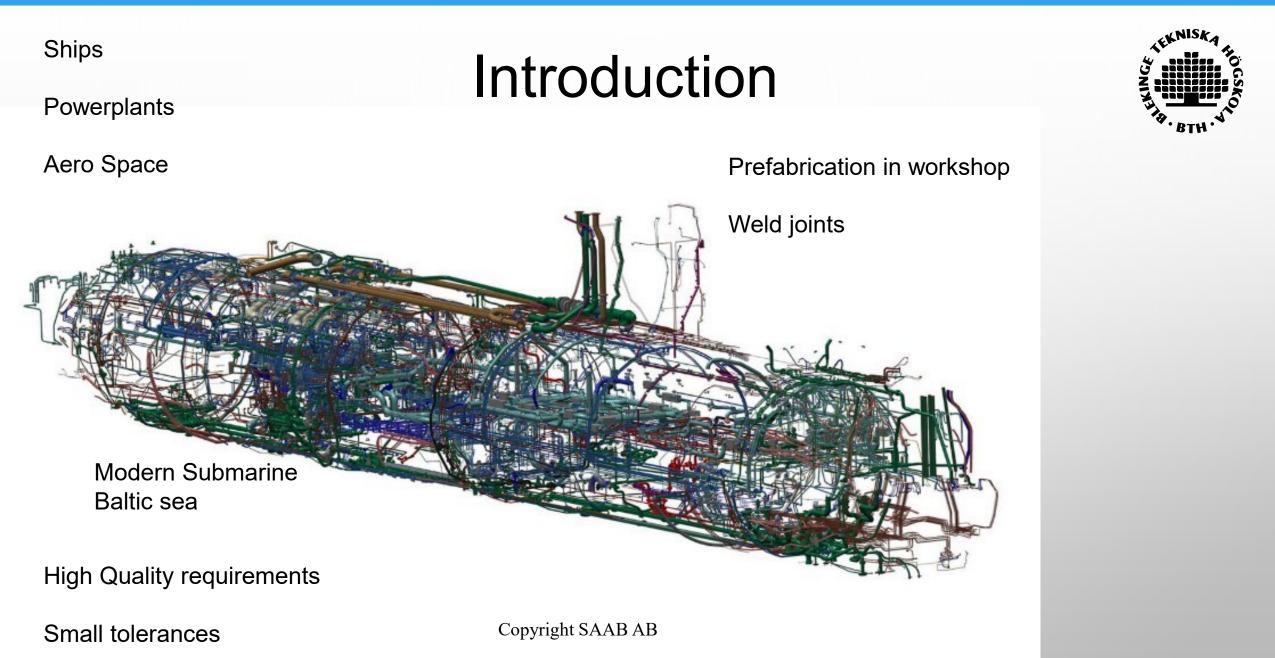


WELD DATA COLLECTING FOR USE IN WELDING SIMULATIONS AND DIGITAL TWINS

Martin Gredehall Department of Mathematics and Natural Sciences Blekinge Institute of Technology Karlskrona, Sweden e-mail: martin.gredehall@bth.se Prof. Dr. Tobias Larsson Department of Mechanical Engineering Blekinge Institute of Technology Karlskrona, Sweden e-mail: tobias.larsson@bth.se

Presenter



Martin Gredehall MSc ME KTH Industry BTH phd

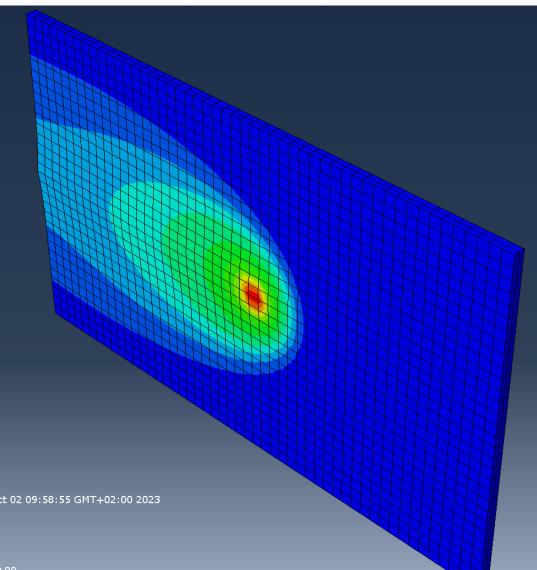
Aerospace Powerplants Shipyards

Why?

Referens 20240522: https://www.saab.com/newsroom/stories/2020/july/a-submarine-in-space

Welding – Joining method

Some problem with welding as a joining method


Shrinkage

Bending

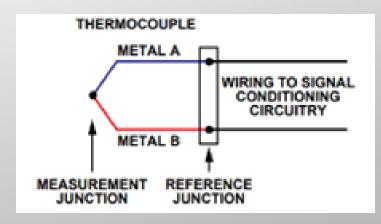
Distortion

Simulation of welding

- To predict and control the problems of welding before production.
- Collect data to compare with ٠ simulation data.

F00

How?


Equipment

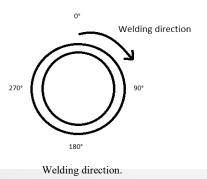
Automatic orbital TIG-Welding

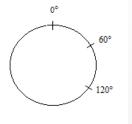
Welding machine: AMI MODEL 415A from ARC Machines Inc.

Thermocouple's type K

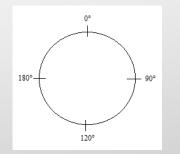
Material

Base material: Stainless steel 316L (1.4404).


Pipe: Outer diameter 88.9 mm and a wall thickness of 2 mm.


Length of each pipe: 300 mm. Total 600 mm.

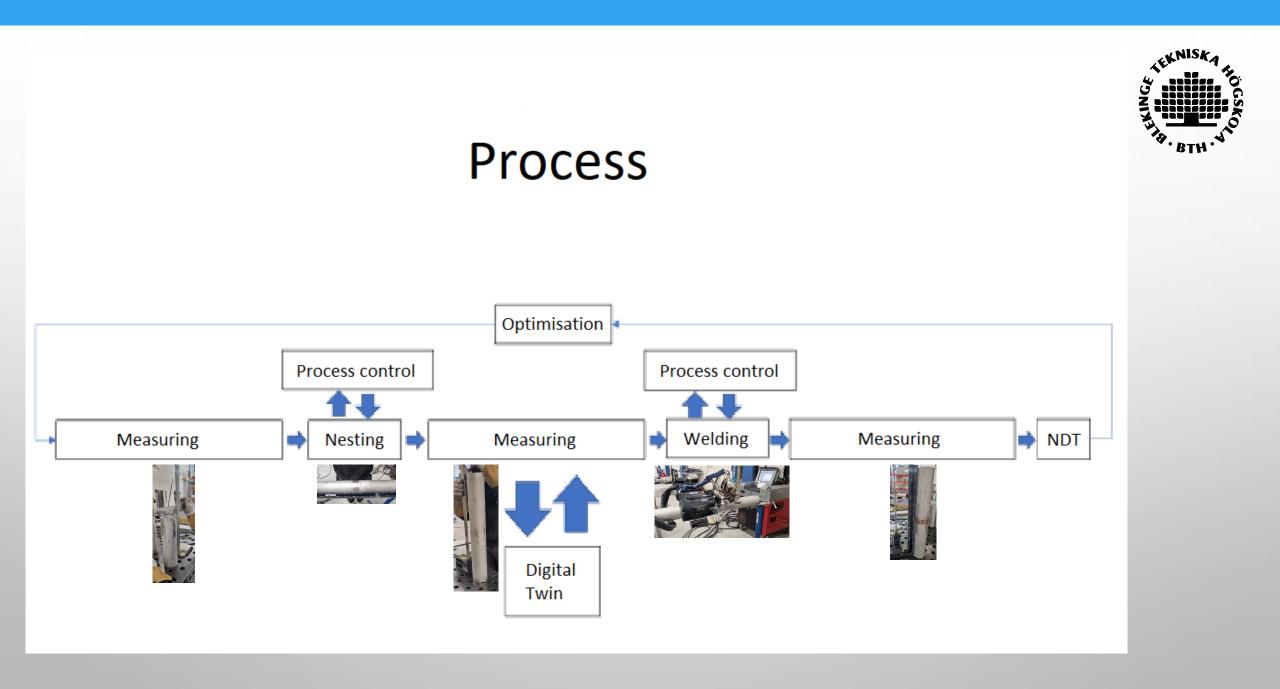
Seamless pipe for less interfering with the weld.


Weld direction and placement of thermocouple's

10, 15 and 20 mm from weld

Placement of thermocouples. Test one.

10, 15, 20 and 25 mm from weld


Placement of thermocouples. Test 2 and 3.

Research questions

RQ1: Will it be possible to collect temperature data from welding that later can be used for welding simulation in a digital twin?

RQ2: Will it be possible to measure longitudinal shrinkage on a thin wall stainless pipe after orbital welding so that the data can be used in welding simulation?

Results

Measurement

Straightness after welding

Results

MEASURMENTS SHRINKAGE

Test one								
(mm)	0°	90°	180°	270°	Mean value	Mean shrinkage		
Measurement before welding	589,5	598,1	598,1	598,4	598,3	0,12%		
Mesurment after welding	597,6	597,6	597,5	597,5	597,6	0,7 mm		

Test two								
(mm)	0°	90°	180°	270°	Mear value	Mean shrinkage		
Measurement before welding	604,5	604,6	604,2	604,6	604,	0,15%		
Mesurment after welding	603,8	603,3	603,3	604	603,6	0,9 mm		

Test tree								
(mm)	0°	90°	180°	270°	Mean value	Mean shrinkage		
Measurement before welding	598,1	598	598,2	598,5	598,2	0,18%		
Mesurment after welding	597	596,6	597,1	597,6	597,1	1,1 mm		

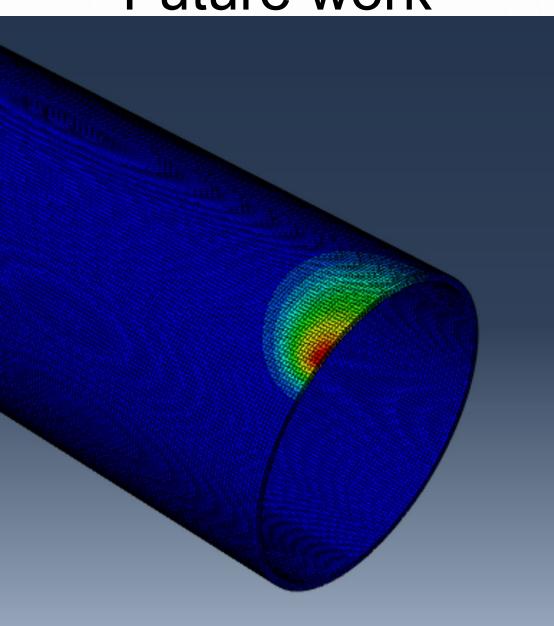
MEASUREMENT TEMPERATURE

Test 1					
Weld start 315°, this weld was visually OK					
Placement of thermocouple	0°	60°	120°		
mm from center of weld	10	15	20		
Temperature in Celsius lap 1	582	427	322		
Temperature in Celsius lap 2	604	491	394		

Test 2						
Weld start 0°, this weld was visually OK						
Placement of thermocouple	0°	90°	180°	270°		
mm from center of weld	10	15	20	25		
Temperature in Celsius lap 1	443	351	276	176		
Temperature in Celsius lap 2	520	442	265	_		

Test 3						
Weld start 0°, This weld was visually not OK						
Placement of thermocouple	0°	90°	180°	270°		
mm from center of weld	10	15	20	25		
Temperature in Celsius lap 1	493	487	330	284		
Temperature in Celsius lap 2	639	392	304	-		

Some possible errors


Air pockets between the thermocouples and the base material – Heat conducting past

Welding Equipment – Calibrated according to IEC 60974-14

Thermocouples – Calibrated

Simulation of welding in whole piping systems from start to end for ships, powerplants, aerospace etc.

Future work

