
Multi-agent Dynamic Interaction in
Simulation of Complex Adaptive Systems

Hantao Hua1, Feng Zhu2*, Yiping Yao2 and Wenjie Tang2

1College of Computer, 2College of Systems Engineering
National University of Defense Technology

Changsha, China
Corresponding authors: Feng Zhu zhufeng@nudt.edu.cn

Presenter: Hantao Hua ht_hua@nudt.edu.cn

mailto:zhufeng@nudt.edu.cn
mailto:ht_hua@nudt.edu.cn

Presenter information

Hantao Hua ht_hua@nudt.edu.cn

Doctor student at the National University of Defense Technology
Studies under the supervision of Researcher Yiping Yao
Mainly engaged in research directions such as high-performance
simulation

mailto:ht_hua@nudt.edu.cn

Introduction

Limitation

As the scale of CAS increases, the complexity of interactions between agents increases, traditional multi-

agent modeling and simulation methods face the challenge of intuitively describing dynamic interactions.

The static interaction structure leads to long runtime and high memory consumption.

Research background and current status

Complex adaptive systems (CAS)

CAS are systems composed of autonomous, interacting agents,

where the interactions between agents change frequently and

the structure is complex.

Complex adaptive systems

Introduction

Dynamic Attribute Filtering Algorithm

Accurately determine interactions between agent

instances based on a dynamic attribute filtering

algorithm.

Automatically generate dynamic data filtering

algorithms from MAG.

Research objectives and methods

Multi-Agent Interaction Graph (MAG)

MAG graphically describe dynamic interactions

between different agents.

Establish data communication between agent models

using a publish/subscribe mechanism.

Instantiated MAG

Materials & Methods
Multi-Agent Interaction Graph

Graphical Representation of Agent Models
Ports: Represent input and output channels for
communication.
Extended Petri Net: Graphically represents the
behavior logic of the agent model.
Data and Function Components: Store state
data and indicate computing functions,
respectively.
Links: Show control and data flow between
components.

Structure of Multi-agent Interaction Graph
Attribute Filters: Define potential interactions
between agent models with configurable
expressions.
Dynamic Interaction: Interactions between
agent instances are determined dynamically
based on attribute values. Graphical representation of an agent model and its interaction

A Class

(agent icon)p1 p2

Attribute-filter PortAttribute-filter Port

Attribute-filter PortAttribute-filter Port

d1

d2

d4

fm

fn

fp

d3

d1

d2

d4

fm

fn

fp

d3

data:

function:

link

B Class

(agent icon)p3 p4F

ClassName:
AtrributeList:

EventList:
ScheduleList:

PortList:
MapList:

Description:

[string]
[attribute, …]
[event, …]
[<event, event>, …]
[port, …]
[<event, port>, …]
[string]

Agent_A_1

Agent_A_2

Agent_B_1

Agent_B_2

Agent_B_3

Agent_B_4

filter

ec
na

ts
ni instance

Multi-agent
Interaction Graph

distance<10

distance[1]=23
distance[2]=36
distance[3]=48
distance[4]=8

distance[1]=6
distance[2]=14
distance[3]=25
distance[4]=45

Materials & Methods
Automatic Filter Generation

Use Chain-of-Thought (CoT) to hint at large models to improve the accuracy of generated code.

Step 1: MAG to natural language description
Use the Large Vision Model (LVM) to convert MAG into a description close to natural language,
including the input parameters and the discriminant logic of the filter expression.

Step 2: Filter Code Generation
Use the Large Language Model (LLM) to convert the generated natural language description into
the corresponding filter code.

Chain-of-Thought (CoT)

Materials & Methods
Automatic Filter Generation

The figure demonstrates the transformation process from MAG to description and then to code.

Dynamic data filtering automated generation process

Step 1：MAG to natural language descriptions
In-Context Pairs

MAG NL descriptions
Descriptions: This diagram shows the
interaction and attribute relationships
between different Agents. The
interaction between these A g e n t s is
defined by one parameter distance.
There is a "filter" section in the
diagram, which indicates that the
interaction communication between
instances of intelligences is filtered
based on certain attribute values. In the
figure then it indicates that the distance
of agents must be less than 10 before
they interact with each other.

Agent_A_1

Agent_A_2

Agent_B_1

Agent_B_2

Agent_B_3

Agent_B_4

filter

instance

instance

Agent_A

(class icon)

Agent_B

(class icon)p1 p2 p3 p4F

distance[1]=23
distance[2]=36
distance[3]=48
distance[4]=8

distance[1]=6
distance[2]=14
distance[3]=25
distance[4]=45

distance<10

Input MAG and Question

Agent_A_1

Agent_A_2

Agent_B_1

Agent_B_2

Agent_B_3

Agent_B_4

filter

instance

instance

Agent_A

(class icon)

Agent_B

(class icon)p1 p2 p3 p4F

Attributes:
load=10

battery=100
position=(1,1)

Attributes:
load=5

battery=70
position=(5,10)

Σ load>10

battery>60

distance<10

Q u e s t i o n : Generate a piece of
descriptive code for the filter of this
multi-agent interaction graph.

Large
Version
Models

Output Answers

Output: This figure shows the interaction and attribute
relationships between different agents. The interactions
between these instances are defined by three parameters
load,battery and position attributes.
There is a "filter" section in the diagram, which
represents the filtering of the interactions between the
instances of the intelligences based on the values of
certain attributes. In the figure then it is indicated that
the sum of load of two agents should be greater than 10,
battery both greater than 60 and distance less than 10 for
interaction to occur between them.

Step 2：Filter code generation

In-Context Pairs
NL descriptions

Large
Language

Models

Descriptions: In the
figure then it indicates
that the distance o f
agents must be less
than 10 before they
interact with each
other.

Code generated
Code:
 bool meetsFilterCriteria(
Agent_A& Agent1,
Agent_B& Agent2) {
return
distance(Agent1,Agent2)
<= max_distance};

Generated Code

bool meetsFilterCriteria(Agent_A& Agent1, Agent_B& Agent2) {
return Agent1.battery_level >= min_battery_level &&
Agent2.battery_level >= min_battery_level
&& Agent1.load+Agent2.load>=min_load_standard &&
distance(Agent1.position,Agent2.position) <= max_distance
};

Experiments & Analysis
Test Scenarios Introduction

We designed two CAS scenarios to test the proposed simulation
framework and attribute filter designed.

Aircraft Collision Avoidance Scenario:
Describe the critical issue of aircraft collision avoidance in the
airspace near civilian airports.

Swarm Robot Cooperation Scenario:
Describe how swarm robots collaborate in search and rescue
environments to accomplish tasks.

CAS Interaction Diagram for Aircraft Collision Avoidance Scenario

Experiments & Analysis
Scenarios Realization Analysis

We simulated two scenarios in a very short period of
time to evaluate the attribute filter’s performances.

Aircraft Collision Avoidance Scenario:
Demonstrated a 17% reduction in total communication data
compared to static interaction models, showcasing the
effectiveness of dynamic interaction.

Swarm Robot Cooperation Scenario:
Achieved a 34% reduction in communication data over time,
highlighting significant optimization in data communication.

Execution Time and Memory Consumption:
With an increase in the number of agents, the MAG-based
model showed a 20%-60% reduction in execution time and a
1.8%-4% decrease in memory consumption in aircraft
scenarios. In swarm robot scenarios, execution time was
reduced by approximately 30%.

Visualized Analysis of Four-aircraft Collision Avoidance

Experiments & Analysis

We also analyze the system’s Scalability, Stability and Generality.

Scalability Analysis:
With an increasing number of agents, the system's performance
was analyzed to evaluate its scalability.
Demonstrated a 20%-60% reduction in execution time and a
1.8%-4% decrease in memory consumption for aircraft scenarios.
A 30% reduction in execution time for swarm robot scenarios.

Generality Testing:
Tested filter code generation using various combinations of large
models to ensure the system's versatility across different
scenarios.
Successful generation of filter codes across different model
combinations, highlighting the system's adaptability.

Scalability, Stability, and Generality

Memory Consumption of the Aircraft Collision Avoidance Scenario

Experiments & Analysis

We tested whether In-Context Learning (ICL) brings the stability and consistency to large model-based methods.
Conducted tests using a non-ICL approach (direct prompt input) alongside the ICL method for comparison.
Bottom figure illustrates the different text generation tasks, the ICL pairs utilized, and the success rate of
generating the correct target text over 100 trials with varying inputs.

Findings indicate that ICL significantly improves the stability of output results in text generation tasks.

Scalability, Stability, and Generality

Conclusion & Future

We propose The Multi-Agent Interaction Graph (MAG) effectively models dynamic interactions in Complex
Adaptive Systems (CAS). At the same time, the filtering algorithm based on dynamic interaction reduces irrelevant
communication, leading to decreased simulation execution time and memory consumption.

Performance Improvements:
Demonstrated a 20%-60% reduction in execution time and 1.8%-5.5% reduction in memory usage across various
scenarios. Showcased the scalability and efficiency of the MAG-based modeling approach.

Stability and Generality:
In-Context Learning (ICL) enhanced the stability and consistency of the system's output.
The system's generality was validated through successful filter code generation across different model combinations.

Future Research Directions:
Further development of more complex simulation models using the MAG framework.
Exploration of additional applications in diverse complex systems to validate the versatility of the MAG approach.

Thank you for listening

